MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcpasc Structured version   Visualization version   GIF version

Theorem bcpasc 13148
Description: Pascal's rule for the binomial coefficient, generalized to all integers 𝐾. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcpasc ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))

Proof of Theorem bcpasc
StepHypRef Expression
1 peano2nn0 11371 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2 elfzp12 12457 . . . . . . 7 ((𝑁 + 1) ∈ (ℤ‘0) → (𝐾 ∈ (0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1)))))
3 nn0uz 11760 . . . . . . 7 0 = (ℤ‘0)
42, 3eleq2s 2748 . . . . . 6 ((𝑁 + 1) ∈ ℕ0 → (𝐾 ∈ (0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1)))))
51, 4syl 17 . . . . 5 (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...(𝑁 + 1)) ↔ (𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1)))))
6 1p0e1 11171 . . . . . . . 8 (1 + 0) = 1
7 bcn0 13137 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁C0) = 1)
8 0z 11426 . . . . . . . . . . 11 0 ∈ ℤ
9 1z 11445 . . . . . . . . . . 11 1 ∈ ℤ
10 zsubcl 11457 . . . . . . . . . . 11 ((0 ∈ ℤ ∧ 1 ∈ ℤ) → (0 − 1) ∈ ℤ)
118, 9, 10mp2an 708 . . . . . . . . . 10 (0 − 1) ∈ ℤ
12 0re 10078 . . . . . . . . . . . 12 0 ∈ ℝ
13 ltm1 10901 . . . . . . . . . . . 12 (0 ∈ ℝ → (0 − 1) < 0)
1412, 13ax-mp 5 . . . . . . . . . . 11 (0 − 1) < 0
1514orci 404 . . . . . . . . . 10 ((0 − 1) < 0 ∨ 𝑁 < (0 − 1))
16 bcval4 13134 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (0 − 1) ∈ ℤ ∧ ((0 − 1) < 0 ∨ 𝑁 < (0 − 1))) → (𝑁C(0 − 1)) = 0)
1711, 15, 16mp3an23 1456 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁C(0 − 1)) = 0)
187, 17oveq12d 6708 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁C0) + (𝑁C(0 − 1))) = (1 + 0))
19 bcn0 13137 . . . . . . . . 9 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1)C0) = 1)
201, 19syl 17 . . . . . . . 8 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C0) = 1)
216, 18, 203eqtr4a 2711 . . . . . . 7 (𝑁 ∈ ℕ0 → ((𝑁C0) + (𝑁C(0 − 1))) = ((𝑁 + 1)C0))
22 oveq2 6698 . . . . . . . . 9 (𝐾 = 0 → (𝑁C𝐾) = (𝑁C0))
23 oveq1 6697 . . . . . . . . . 10 (𝐾 = 0 → (𝐾 − 1) = (0 − 1))
2423oveq2d 6706 . . . . . . . . 9 (𝐾 = 0 → (𝑁C(𝐾 − 1)) = (𝑁C(0 − 1)))
2522, 24oveq12d 6708 . . . . . . . 8 (𝐾 = 0 → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁C0) + (𝑁C(0 − 1))))
26 oveq2 6698 . . . . . . . 8 (𝐾 = 0 → ((𝑁 + 1)C𝐾) = ((𝑁 + 1)C0))
2725, 26eqeq12d 2666 . . . . . . 7 (𝐾 = 0 → (((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾) ↔ ((𝑁C0) + (𝑁C(0 − 1))) = ((𝑁 + 1)C0)))
2821, 27syl5ibrcom 237 . . . . . 6 (𝑁 ∈ ℕ0 → (𝐾 = 0 → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)))
29 simpr 476 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐾 ∈ ((0 + 1)...(𝑁 + 1)))
30 0p1e1 11170 . . . . . . . . . 10 (0 + 1) = 1
3130oveq1i 6700 . . . . . . . . 9 ((0 + 1)...(𝑁 + 1)) = (1...(𝑁 + 1))
3229, 31syl6eleq 2740 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → 𝐾 ∈ (1...(𝑁 + 1)))
33 nn0p1nn 11370 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
34 nnuz 11761 . . . . . . . . . . 11 ℕ = (ℤ‘1)
3533, 34syl6eleq 2740 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (ℤ‘1))
36 fzm1 12458 . . . . . . . . . . 11 ((𝑁 + 1) ∈ (ℤ‘1) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1))))
3736biimpa 500 . . . . . . . . . 10 (((𝑁 + 1) ∈ (ℤ‘1) ∧ 𝐾 ∈ (1...(𝑁 + 1))) → (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1)))
3835, 37sylan 487 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐾 ∈ (1...(𝑁 + 1))) → (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1)))
39 nn0cn 11340 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
40 ax-1cn 10032 . . . . . . . . . . . . . . 15 1 ∈ ℂ
41 pncan 10325 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 1) − 1) = 𝑁)
4239, 40, 41sylancl 695 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ((𝑁 + 1) − 1) = 𝑁)
4342oveq2d 6706 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (1...((𝑁 + 1) − 1)) = (1...𝑁))
4443eleq2d 2716 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (𝐾 ∈ (1...((𝑁 + 1) − 1)) ↔ 𝐾 ∈ (1...𝑁)))
4544biimpa 500 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐾 ∈ (1...((𝑁 + 1) − 1))) → 𝐾 ∈ (1...𝑁))
46 fz1ssfz0 12474 . . . . . . . . . . . . . 14 (1...𝑁) ⊆ (0...𝑁)
4746sseli 3632 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (0...𝑁))
48 bcp1n 13143 . . . . . . . . . . . . 13 (𝐾 ∈ (0...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
4947, 48syl 17 . . . . . . . . . . . 12 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1)C𝐾) = ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))))
50 bcrpcl 13135 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (0...𝑁) → (𝑁C𝐾) ∈ ℝ+)
5147, 50syl 17 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) ∈ ℝ+)
5251rpcnd 11912 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) ∈ ℂ)
53 elfzuz2 12384 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ (ℤ‘1))
5453, 34syl6eleqr 2741 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℕ)
5554peano2nnd 11075 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℕ)
5655nncnd 11074 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℂ)
5754nncnd 11074 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 𝑁 ∈ ℂ)
58 1cnd 10094 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 1 ∈ ℂ)
59 elfzelz 12380 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℤ)
6059zcnd 11521 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℂ)
6157, 58, 60addsubd 10451 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) = ((𝑁𝐾) + 1))
62 fznn0sub 12411 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → (𝑁𝐾) ∈ ℕ0)
63 nn0p1nn 11370 . . . . . . . . . . . . . . . . . 18 ((𝑁𝐾) ∈ ℕ0 → ((𝑁𝐾) + 1) ∈ ℕ)
6462, 63syl 17 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → ((𝑁𝐾) + 1) ∈ ℕ)
6561, 64eqeltrd 2730 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℕ)
6665nncnd 11074 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℂ)
6765nnne0d 11103 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ≠ 0)
6852, 56, 66, 67div12d 10875 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = ((𝑁 + 1) · ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾))))
6965nnrpd 11908 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 𝐾) ∈ ℝ+)
7051, 69rpdivcld 11927 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) ∈ ℝ+)
7170rpcnd 11912 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) ∈ ℂ)
7256, 71mulcomd 10099 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) · ((𝑁C𝐾) / ((𝑁 + 1) − 𝐾))) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1)))
7368, 72eqtrd 2685 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1)))
7456, 60npcand 10434 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) + 𝐾) = (𝑁 + 1))
7574oveq2d 6706 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) + 𝐾)) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (𝑁 + 1)))
7671, 66, 60adddid 10102 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · (((𝑁 + 1) − 𝐾) + 𝐾)) = ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾)))
7773, 75, 763eqtr2d 2691 . . . . . . . . . . . 12 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) · ((𝑁 + 1) / ((𝑁 + 1) − 𝐾))) = ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾)))
7852, 66, 67divcan1d 10840 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) = (𝑁C𝐾))
79 elfznn 12408 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℕ)
8079nnne0d 11103 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → 𝐾 ≠ 0)
8152, 66, 60, 67, 80divdiv2d 10871 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (((𝑁C𝐾) · 𝐾) / ((𝑁 + 1) − 𝐾)))
82 bcm1k 13142 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)))
8357, 60, 58subsub3d 10460 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → (𝑁 − (𝐾 − 1)) = ((𝑁 + 1) − 𝐾))
8483oveq1d 6705 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → ((𝑁 − (𝐾 − 1)) / 𝐾) = (((𝑁 + 1) − 𝐾) / 𝐾))
8584oveq2d 6706 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → ((𝑁C(𝐾 − 1)) · ((𝑁 − (𝐾 − 1)) / 𝐾)) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾)))
8682, 85eqtrd 2685 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾)))
87 fzelp1 12431 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ (1...(𝑁 + 1)))
8855nnzd 11519 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ (1...𝑁) → (𝑁 + 1) ∈ ℤ)
89 elfzm1b 12456 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℤ ∧ (𝑁 + 1) ∈ ℤ) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1))))
9059, 88, 89syl2anc 694 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (1...𝑁) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1))))
9187, 90mpbid 222 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1)))
9257, 40, 41sylancl 695 . . . . . . . . . . . . . . . . . . . 20 (𝐾 ∈ (1...𝑁) → ((𝑁 + 1) − 1) = 𝑁)
9392oveq2d 6706 . . . . . . . . . . . . . . . . . . 19 (𝐾 ∈ (1...𝑁) → (0...((𝑁 + 1) − 1)) = (0...𝑁))
9491, 93eleqtrd 2732 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → (𝐾 − 1) ∈ (0...𝑁))
95 bcrpcl 13135 . . . . . . . . . . . . . . . . . 18 ((𝐾 − 1) ∈ (0...𝑁) → (𝑁C(𝐾 − 1)) ∈ ℝ+)
9694, 95syl 17 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) ∈ ℝ+)
9796rpcnd 11912 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (𝑁C(𝐾 − 1)) ∈ ℂ)
9879nnrpd 11908 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (1...𝑁) → 𝐾 ∈ ℝ+)
9969, 98rpdivcld 11927 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) ∈ ℝ+)
10099rpcnd 11912 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) ∈ ℂ)
10199rpne0d 11915 . . . . . . . . . . . . . . . 16 (𝐾 ∈ (1...𝑁) → (((𝑁 + 1) − 𝐾) / 𝐾) ≠ 0)
10252, 97, 100, 101divmul3d 10873 . . . . . . . . . . . . . . 15 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (𝑁C(𝐾 − 1)) ↔ (𝑁C𝐾) = ((𝑁C(𝐾 − 1)) · (((𝑁 + 1) − 𝐾) / 𝐾))))
10386, 102mpbird 247 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) / (((𝑁 + 1) − 𝐾) / 𝐾)) = (𝑁C(𝐾 − 1)))
10452, 60, 66, 67div23d 10876 . . . . . . . . . . . . . 14 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) · 𝐾) / ((𝑁 + 1) − 𝐾)) = (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾))
10581, 103, 1043eqtr3rd 2694 . . . . . . . . . . . . 13 (𝐾 ∈ (1...𝑁) → (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾) = (𝑁C(𝐾 − 1)))
10678, 105oveq12d 6708 . . . . . . . . . . . 12 (𝐾 ∈ (1...𝑁) → ((((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · ((𝑁 + 1) − 𝐾)) + (((𝑁C𝐾) / ((𝑁 + 1) − 𝐾)) · 𝐾)) = ((𝑁C𝐾) + (𝑁C(𝐾 − 1))))
10749, 77, 1063eqtrrd 2690 . . . . . . . . . . 11 (𝐾 ∈ (1...𝑁) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
10845, 107syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 ∈ (1...((𝑁 + 1) − 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
109 oveq2 6698 . . . . . . . . . . . . 13 (𝐾 = (𝑁 + 1) → (𝑁C𝐾) = (𝑁C(𝑁 + 1)))
11033nnzd 11519 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
111 nn0re 11339 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
112111ltp1d 10992 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0𝑁 < (𝑁 + 1))
113112olcd 407 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1)))
114 bcval4 13134 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℤ ∧ ((𝑁 + 1) < 0 ∨ 𝑁 < (𝑁 + 1))) → (𝑁C(𝑁 + 1)) = 0)
115110, 113, 114mpd3an23 1466 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁C(𝑁 + 1)) = 0)
116109, 115sylan9eqr 2707 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝑁C𝐾) = 0)
117 oveq1 6697 . . . . . . . . . . . . . . 15 (𝐾 = (𝑁 + 1) → (𝐾 − 1) = ((𝑁 + 1) − 1))
118117, 42sylan9eqr 2707 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝐾 − 1) = 𝑁)
119118oveq2d 6706 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝑁C(𝐾 − 1)) = (𝑁C𝑁))
120 bcnn 13139 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1)
121120adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝑁C𝑁) = 1)
122119, 121eqtrd 2685 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → (𝑁C(𝐾 − 1)) = 1)
123116, 122oveq12d 6708 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = (0 + 1))
124 oveq2 6698 . . . . . . . . . . . 12 (𝐾 = (𝑁 + 1) → ((𝑁 + 1)C𝐾) = ((𝑁 + 1)C(𝑁 + 1)))
125 bcnn 13139 . . . . . . . . . . . . 13 ((𝑁 + 1) ∈ ℕ0 → ((𝑁 + 1)C(𝑁 + 1)) = 1)
1261, 125syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ((𝑁 + 1)C(𝑁 + 1)) = 1)
127124, 126sylan9eqr 2707 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → ((𝑁 + 1)C𝐾) = 1)
12830, 123, 1273eqtr4a 2711 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 = (𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
129108, 128jaodan 843 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ (𝐾 ∈ (1...((𝑁 + 1) − 1)) ∨ 𝐾 = (𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
13038, 129syldan 486 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ (1...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
13132, 130syldan 486 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
132131ex 449 . . . . . 6 (𝑁 ∈ ℕ0 → (𝐾 ∈ ((0 + 1)...(𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)))
13328, 132jaod 394 . . . . 5 (𝑁 ∈ ℕ0 → ((𝐾 = 0 ∨ 𝐾 ∈ ((0 + 1)...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)))
1345, 133sylbid 230 . . . 4 (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...(𝑁 + 1)) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾)))
135134imp 444 . . 3 ((𝑁 ∈ ℕ0𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
136135adantlr 751 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
137 00id 10249 . . 3 (0 + 0) = 0
138 fzelp1 12431 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ (0...(𝑁 + 1)))
139138con3i 150 . . . . 5 𝐾 ∈ (0...(𝑁 + 1)) → ¬ 𝐾 ∈ (0...𝑁))
140 bcval3 13133 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
1411403expa 1284 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0)
142139, 141sylan2 490 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → (𝑁C𝐾) = 0)
143 simpll 805 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → 𝑁 ∈ ℕ0)
144 simplr 807 . . . . . 6 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → 𝐾 ∈ ℤ)
145 peano2zm 11458 . . . . . 6 (𝐾 ∈ ℤ → (𝐾 − 1) ∈ ℤ)
146144, 145syl 17 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → (𝐾 − 1) ∈ ℤ)
14739adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → 𝑁 ∈ ℂ)
148147, 40, 41sylancl 695 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁 + 1) − 1) = 𝑁)
149148oveq2d 6706 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (0...((𝑁 + 1) − 1)) = (0...𝑁))
150149eleq2d 2716 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 − 1) ∈ (0...((𝑁 + 1) − 1)) ↔ (𝐾 − 1) ∈ (0...𝑁)))
151 id 22 . . . . . . . . 9 (𝐾 ∈ ℤ → 𝐾 ∈ ℤ)
1521nn0zd 11518 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℤ)
153151, 152, 89syl2anr 494 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → (𝐾 ∈ (1...(𝑁 + 1)) ↔ (𝐾 − 1) ∈ (0...((𝑁 + 1) − 1))))
154 fz1ssfz0 12474 . . . . . . . . 9 (1...(𝑁 + 1)) ⊆ (0...(𝑁 + 1))
155154sseli 3632 . . . . . . . 8 (𝐾 ∈ (1...(𝑁 + 1)) → 𝐾 ∈ (0...(𝑁 + 1)))
156153, 155syl6bir 244 . . . . . . 7 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 − 1) ∈ (0...((𝑁 + 1) − 1)) → 𝐾 ∈ (0...(𝑁 + 1))))
157150, 156sylbird 250 . . . . . 6 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝐾 − 1) ∈ (0...𝑁) → 𝐾 ∈ (0...(𝑁 + 1))))
158157con3dimp 456 . . . . 5 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ¬ (𝐾 − 1) ∈ (0...𝑁))
159 bcval3 13133 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝐾 − 1) ∈ ℤ ∧ ¬ (𝐾 − 1) ∈ (0...𝑁)) → (𝑁C(𝐾 − 1)) = 0)
160143, 146, 158, 159syl3anc 1366 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → (𝑁C(𝐾 − 1)) = 0)
161142, 160oveq12d 6708 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = (0 + 0))
162143, 1syl 17 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → (𝑁 + 1) ∈ ℕ0)
163 simpr 476 . . . 4 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ¬ 𝐾 ∈ (0...(𝑁 + 1)))
164 bcval3 13133 . . . 4 (((𝑁 + 1) ∈ ℕ0𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1)C𝐾) = 0)
165162, 144, 163, 164syl3anc 1366 . . 3 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁 + 1)C𝐾) = 0)
166137, 161, 1653eqtr4a 2711 . 2 (((𝑁 ∈ ℕ0𝐾 ∈ ℤ) ∧ ¬ 𝐾 ∈ (0...(𝑁 + 1))) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
167136, 166pm2.61dan 849 1 ((𝑁 ∈ ℕ0𝐾 ∈ ℤ) → ((𝑁C𝐾) + (𝑁C(𝐾 − 1))) = ((𝑁 + 1)C𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1523  wcel 2030   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cmin 10304   / cdiv 10722  cn 11058  0cn0 11330  cz 11415  cuz 11725  +crp 11870  ...cfz 12364  Ccbc 13129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-seq 12842  df-fac 13101  df-bc 13130
This theorem is referenced by:  bccl  13149  bcn2m1  13151  bcn2p1  13152  hashbclem  13274  binomlem  14605  bcxmas  14611  binomfallfaclem2  14815  srgbinomlem  18590  bcp1ctr  25049  ex-bc  27439  bccolsum  31751  fwddifnp1  32397  dvnmul  40476  bcpascm1  42454
  Copyright terms: Public domain W3C validator