Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme35f Structured version   Visualization version   GIF version

Theorem cdleme35f 37605
Description: Part of proof of Lemma E in [Crawley] p. 113. TODO: FIX COMMENT. (Contributed by NM, 10-Mar-2013.)
Hypotheses
Ref Expression
cdleme35.l = (le‘𝐾)
cdleme35.j = (join‘𝐾)
cdleme35.m = (meet‘𝐾)
cdleme35.a 𝐴 = (Atoms‘𝐾)
cdleme35.h 𝐻 = (LHyp‘𝐾)
cdleme35.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme35.f 𝐹 = ((𝑅 𝑈) (𝑄 ((𝑃 𝑅) 𝑊)))
Assertion
Ref Expression
cdleme35f ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑅 𝑈) (𝑃 𝑅)) = 𝑅)

Proof of Theorem cdleme35f
StepHypRef Expression
1 simp11l 1280 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝐾 ∈ HL)
2 simp12l 1282 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑃𝐴)
3 simp2rl 1238 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅𝐴)
4 cdleme35.j . . . . 5 = (join‘𝐾)
5 cdleme35.a . . . . 5 𝐴 = (Atoms‘𝐾)
64, 5hlatjcom 36519 . . . 4 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑅𝐴) → (𝑃 𝑅) = (𝑅 𝑃))
71, 2, 3, 6syl3anc 1367 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑃 𝑅) = (𝑅 𝑃))
87oveq2d 7172 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑅 𝑈) (𝑃 𝑅)) = ((𝑅 𝑈) (𝑅 𝑃)))
9 simp11 1199 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
10 simp12 1200 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
11 simp13l 1284 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑄𝐴)
12 simp2l 1195 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑃𝑄)
13 cdleme35.l . . . . 5 = (le‘𝐾)
14 cdleme35.m . . . . 5 = (meet‘𝐾)
15 cdleme35.h . . . . 5 𝐻 = (LHyp‘𝐾)
16 cdleme35.u . . . . 5 𝑈 = ((𝑃 𝑄) 𝑊)
1713, 4, 14, 5, 15, 16cdleme0a 37362 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴𝑃𝑄)) → 𝑈𝐴)
189, 10, 11, 12, 17syl112anc 1370 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑈𝐴)
19 simp12r 1283 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ¬ 𝑃 𝑊)
201hllatd 36515 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝐾 ∈ Lat)
21 eqid 2821 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
2221, 4, 5hlatjcl 36518 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
231, 2, 11, 22syl3anc 1367 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑃 𝑄) ∈ (Base‘𝐾))
24 simp11r 1281 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑊𝐻)
2521, 15lhpbase 37149 . . . . . . . . 9 (𝑊𝐻𝑊 ∈ (Base‘𝐾))
2624, 25syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑊 ∈ (Base‘𝐾))
2721, 13, 14latmle2 17687 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) 𝑊)
2820, 23, 26, 27syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑃 𝑄) 𝑊) 𝑊)
2916, 28eqbrtrid 5101 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑈 𝑊)
30 breq1 5069 . . . . . 6 (𝑈 = 𝑃 → (𝑈 𝑊𝑃 𝑊))
3129, 30syl5ibcom 247 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑈 = 𝑃𝑃 𝑊))
3231necon3bd 3030 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (¬ 𝑃 𝑊𝑈𝑃))
3319, 32mpd 15 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑈𝑃)
34 simp3 1134 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ¬ 𝑅 (𝑃 𝑄))
3521, 13, 14latmle1 17686 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑊 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
3620, 23, 26, 35syl3anc 1367 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑃 𝑄) 𝑊) (𝑃 𝑄))
3716, 36eqbrtrid 5101 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑈 (𝑃 𝑄))
3813, 4, 5hlatlej1 36526 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → 𝑃 (𝑃 𝑄))
391, 2, 11, 38syl3anc 1367 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑃 (𝑃 𝑄))
4021, 5atbase 36440 . . . . . . . 8 (𝑈𝐴𝑈 ∈ (Base‘𝐾))
4118, 40syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑈 ∈ (Base‘𝐾))
4221, 5atbase 36440 . . . . . . . 8 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
432, 42syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑃 ∈ (Base‘𝐾))
4421, 13, 4latjle12 17672 . . . . . . 7 ((𝐾 ∈ Lat ∧ (𝑈 ∈ (Base‘𝐾) ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑈 (𝑃 𝑄) ∧ 𝑃 (𝑃 𝑄)) ↔ (𝑈 𝑃) (𝑃 𝑄)))
4520, 41, 43, 23, 44syl13anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑈 (𝑃 𝑄) ∧ 𝑃 (𝑃 𝑄)) ↔ (𝑈 𝑃) (𝑃 𝑄)))
4637, 39, 45mpbi2and 710 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑈 𝑃) (𝑃 𝑄))
4721, 5atbase 36440 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
483, 47syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → 𝑅 ∈ (Base‘𝐾))
4921, 4, 5hlatjcl 36518 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑃𝐴) → (𝑈 𝑃) ∈ (Base‘𝐾))
501, 18, 2, 49syl3anc 1367 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑈 𝑃) ∈ (Base‘𝐾))
5121, 13lattr 17666 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ (𝑈 𝑃) ∈ (Base‘𝐾) ∧ (𝑃 𝑄) ∈ (Base‘𝐾))) → ((𝑅 (𝑈 𝑃) ∧ (𝑈 𝑃) (𝑃 𝑄)) → 𝑅 (𝑃 𝑄)))
5220, 48, 50, 23, 51syl13anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑅 (𝑈 𝑃) ∧ (𝑈 𝑃) (𝑃 𝑄)) → 𝑅 (𝑃 𝑄)))
5346, 52mpan2d 692 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → (𝑅 (𝑈 𝑃) → 𝑅 (𝑃 𝑄)))
5434, 53mtod 200 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ¬ 𝑅 (𝑈 𝑃))
5513, 4, 14, 52llnma2 36940 . . 3 ((𝐾 ∈ HL ∧ (𝑈𝐴𝑃𝐴𝑅𝐴) ∧ (𝑈𝑃 ∧ ¬ 𝑅 (𝑈 𝑃))) → ((𝑅 𝑈) (𝑅 𝑃)) = 𝑅)
561, 18, 2, 3, 33, 54, 55syl132anc 1384 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑅 𝑈) (𝑅 𝑃)) = 𝑅)
578, 56eqtrd 2856 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ ¬ 𝑅 (𝑃 𝑄)) → ((𝑅 𝑈) (𝑃 𝑅)) = 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  cfv 6355  (class class class)co 7156  Basecbs 16483  lecple 16572  joincjn 17554  meetcmee 17555  Latclat 17655  Atomscatm 36414  HLchlt 36501  LHypclh 37135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-proset 17538  df-poset 17556  df-plt 17568  df-lub 17584  df-glb 17585  df-join 17586  df-meet 17587  df-p0 17649  df-p1 17650  df-lat 17656  df-clat 17718  df-oposet 36327  df-ol 36329  df-oml 36330  df-covers 36417  df-ats 36418  df-atl 36449  df-cvlat 36473  df-hlat 36502  df-lhyp 37139
This theorem is referenced by:  cdleme35g  37606
  Copyright terms: Public domain W3C validator