MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cff1 Structured version   Visualization version   GIF version

Theorem cff1 9680
Description: There is always a map from (cf‘𝐴) to 𝐴 (this is a stronger condition than the definition, which only presupposes a map from some 𝑦 ≈ (cf‘𝐴). (Contributed by Mario Carneiro, 28-Feb-2013.)
Assertion
Ref Expression
cff1 (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Distinct variable group:   𝐴,𝑓,𝑤,𝑧

Proof of Theorem cff1
Dummy variables 𝑠 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cfval 9669 . . . 4 (𝐴 ∈ On → (cf‘𝐴) = {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
2 cardon 9373 . . . . . . . . 9 (card‘𝑦) ∈ On
3 eleq1 2900 . . . . . . . . 9 (𝑥 = (card‘𝑦) → (𝑥 ∈ On ↔ (card‘𝑦) ∈ On))
42, 3mpbiri 260 . . . . . . . 8 (𝑥 = (card‘𝑦) → 𝑥 ∈ On)
54adantr 483 . . . . . . 7 ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → 𝑥 ∈ On)
65exlimiv 1931 . . . . . 6 (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → 𝑥 ∈ On)
76abssi 4046 . . . . 5 {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ⊆ On
8 cflem 9668 . . . . . 6 (𝐴 ∈ On → ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)))
9 abn0 4336 . . . . . 6 ({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ≠ ∅ ↔ ∃𝑥𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)))
108, 9sylibr 236 . . . . 5 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ≠ ∅)
11 onint 7510 . . . . 5 (({𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ⊆ On ∧ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ≠ ∅) → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
127, 10, 11sylancr 589 . . . 4 (𝐴 ∈ On → {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
131, 12eqeltrd 2913 . . 3 (𝐴 ∈ On → (cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))})
14 fvex 6683 . . . 4 (cf‘𝐴) ∈ V
15 eqeq1 2825 . . . . . 6 (𝑥 = (cf‘𝐴) → (𝑥 = (card‘𝑦) ↔ (cf‘𝐴) = (card‘𝑦)))
1615anbi1d 631 . . . . 5 (𝑥 = (cf‘𝐴) → ((𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) ↔ ((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))))
1716exbidv 1922 . . . 4 (𝑥 = (cf‘𝐴) → (∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))))
1814, 17elab 3667 . . 3 ((cf‘𝐴) ∈ {𝑥 ∣ ∃𝑦(𝑥 = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠))} ↔ ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)))
1913, 18sylib 220 . 2 (𝐴 ∈ On → ∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)))
20 simplr 767 . . . . . 6 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → (cf‘𝐴) = (card‘𝑦))
21 onss 7505 . . . . . . . . 9 (𝐴 ∈ On → 𝐴 ⊆ On)
22 sstr 3975 . . . . . . . . 9 ((𝑦𝐴𝐴 ⊆ On) → 𝑦 ⊆ On)
2321, 22sylan2 594 . . . . . . . 8 ((𝑦𝐴𝐴 ∈ On) → 𝑦 ⊆ On)
2423ancoms 461 . . . . . . 7 ((𝐴 ∈ On ∧ 𝑦𝐴) → 𝑦 ⊆ On)
2524ad2ant2r 745 . . . . . 6 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → 𝑦 ⊆ On)
26 vex 3497 . . . . . . . . . . 11 𝑦 ∈ V
27 onssnum 9466 . . . . . . . . . . 11 ((𝑦 ∈ V ∧ 𝑦 ⊆ On) → 𝑦 ∈ dom card)
2826, 27mpan 688 . . . . . . . . . 10 (𝑦 ⊆ On → 𝑦 ∈ dom card)
29 cardid2 9382 . . . . . . . . . 10 (𝑦 ∈ dom card → (card‘𝑦) ≈ 𝑦)
3028, 29syl 17 . . . . . . . . 9 (𝑦 ⊆ On → (card‘𝑦) ≈ 𝑦)
3130adantl 484 . . . . . . . 8 (((cf‘𝐴) = (card‘𝑦) ∧ 𝑦 ⊆ On) → (card‘𝑦) ≈ 𝑦)
32 breq1 5069 . . . . . . . . 9 ((cf‘𝐴) = (card‘𝑦) → ((cf‘𝐴) ≈ 𝑦 ↔ (card‘𝑦) ≈ 𝑦))
3332adantr 483 . . . . . . . 8 (((cf‘𝐴) = (card‘𝑦) ∧ 𝑦 ⊆ On) → ((cf‘𝐴) ≈ 𝑦 ↔ (card‘𝑦) ≈ 𝑦))
3431, 33mpbird 259 . . . . . . 7 (((cf‘𝐴) = (card‘𝑦) ∧ 𝑦 ⊆ On) → (cf‘𝐴) ≈ 𝑦)
35 bren 8518 . . . . . . 7 ((cf‘𝐴) ≈ 𝑦 ↔ ∃𝑓 𝑓:(cf‘𝐴)–1-1-onto𝑦)
3634, 35sylib 220 . . . . . 6 (((cf‘𝐴) = (card‘𝑦) ∧ 𝑦 ⊆ On) → ∃𝑓 𝑓:(cf‘𝐴)–1-1-onto𝑦)
3720, 25, 36syl2anc 586 . . . . 5 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → ∃𝑓 𝑓:(cf‘𝐴)–1-1-onto𝑦)
38 f1of1 6614 . . . . . . . . . . 11 (𝑓:(cf‘𝐴)–1-1-onto𝑦𝑓:(cf‘𝐴)–1-1𝑦)
39 f1ss 6580 . . . . . . . . . . . 12 ((𝑓:(cf‘𝐴)–1-1𝑦𝑦𝐴) → 𝑓:(cf‘𝐴)–1-1𝐴)
4039ancoms 461 . . . . . . . . . . 11 ((𝑦𝐴𝑓:(cf‘𝐴)–1-1𝑦) → 𝑓:(cf‘𝐴)–1-1𝐴)
4138, 40sylan2 594 . . . . . . . . . 10 ((𝑦𝐴𝑓:(cf‘𝐴)–1-1-onto𝑦) → 𝑓:(cf‘𝐴)–1-1𝐴)
4241adantlr 713 . . . . . . . . 9 (((𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto𝑦) → 𝑓:(cf‘𝐴)–1-1𝐴)
43423adant1 1126 . . . . . . . 8 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto𝑦) → 𝑓:(cf‘𝐴)–1-1𝐴)
44 f1ofo 6622 . . . . . . . . . . . 12 (𝑓:(cf‘𝐴)–1-1-onto𝑦𝑓:(cf‘𝐴)–onto𝑦)
45 foelrn 6872 . . . . . . . . . . . . . . 15 ((𝑓:(cf‘𝐴)–onto𝑦𝑠𝑦) → ∃𝑤 ∈ (cf‘𝐴)𝑠 = (𝑓𝑤))
46 sseq2 3993 . . . . . . . . . . . . . . . . 17 (𝑠 = (𝑓𝑤) → (𝑧𝑠𝑧 ⊆ (𝑓𝑤)))
4746biimpcd 251 . . . . . . . . . . . . . . . 16 (𝑧𝑠 → (𝑠 = (𝑓𝑤) → 𝑧 ⊆ (𝑓𝑤)))
4847reximdv 3273 . . . . . . . . . . . . . . 15 (𝑧𝑠 → (∃𝑤 ∈ (cf‘𝐴)𝑠 = (𝑓𝑤) → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
4945, 48syl5com 31 . . . . . . . . . . . . . 14 ((𝑓:(cf‘𝐴)–onto𝑦𝑠𝑦) → (𝑧𝑠 → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
5049rexlimdva 3284 . . . . . . . . . . . . 13 (𝑓:(cf‘𝐴)–onto𝑦 → (∃𝑠𝑦 𝑧𝑠 → ∃𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
5150ralimdv 3178 . . . . . . . . . . . 12 (𝑓:(cf‘𝐴)–onto𝑦 → (∀𝑧𝐴𝑠𝑦 𝑧𝑠 → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
5244, 51syl 17 . . . . . . . . . . 11 (𝑓:(cf‘𝐴)–1-1-onto𝑦 → (∀𝑧𝐴𝑠𝑦 𝑧𝑠 → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
5352impcom 410 . . . . . . . . . 10 ((∀𝑧𝐴𝑠𝑦 𝑧𝑠𝑓:(cf‘𝐴)–1-1-onto𝑦) → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))
5453adantll 712 . . . . . . . . 9 (((𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto𝑦) → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))
55543adant1 1126 . . . . . . . 8 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto𝑦) → ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))
5643, 55jca 514 . . . . . . 7 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠) ∧ 𝑓:(cf‘𝐴)–1-1-onto𝑦) → (𝑓:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
57563expia 1117 . . . . . 6 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → (𝑓:(cf‘𝐴)–1-1-onto𝑦 → (𝑓:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))))
5857eximdv 1918 . . . . 5 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → (∃𝑓 𝑓:(cf‘𝐴)–1-1-onto𝑦 → ∃𝑓(𝑓:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))))
5937, 58mpd 15 . . . 4 (((𝐴 ∈ On ∧ (cf‘𝐴) = (card‘𝑦)) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → ∃𝑓(𝑓:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
6059expl 460 . . 3 (𝐴 ∈ On → (((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → ∃𝑓(𝑓:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))))
6160exlimdv 1934 . 2 (𝐴 ∈ On → (∃𝑦((cf‘𝐴) = (card‘𝑦) ∧ (𝑦𝐴 ∧ ∀𝑧𝐴𝑠𝑦 𝑧𝑠)) → ∃𝑓(𝑓:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤))))
6219, 61mpd 15 1 (𝐴 ∈ On → ∃𝑓(𝑓:(cf‘𝐴)–1-1𝐴 ∧ ∀𝑧𝐴𝑤 ∈ (cf‘𝐴)𝑧 ⊆ (𝑓𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wne 3016  wral 3138  wrex 3139  Vcvv 3494  wss 3936  c0 4291   cint 4876   class class class wbr 5066  dom cdm 5555  Oncon0 6191  1-1wf1 6352  ontowfo 6353  1-1-ontowf1o 6354  cfv 6355  cen 8506  cardccrd 9364  cfccf 9366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-wrecs 7947  df-recs 8008  df-er 8289  df-en 8510  df-dom 8511  df-card 9368  df-cf 9370
This theorem is referenced by:  cfsmolem  9692  cfcoflem  9694  cfcof  9696  alephreg  10004
  Copyright terms: Public domain W3C validator