MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climbdd Structured version   Visualization version   GIF version

Theorem climbdd 15028
Description: A converging sequence of complex numbers is bounded. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypothesis
Ref Expression
climcau.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
climbdd ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝑀,𝑥   𝑘,𝑍,𝑥

Proof of Theorem climbdd
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1134 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
2 climcau.1 . . . . 5 𝑍 = (ℤ𝑀)
32climcau 15027 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑦)
433adant3 1128 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑦)
52caubnd 14718 . . 3 ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥)
61, 4, 5syl2anc 586 . 2 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥)
7 r19.26 3170 . . . . . . 7 (∀𝑘𝑍 ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐹𝑘)) < 𝑥) ↔ (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥))
8 simpr 487 . . . . . . . . . . 11 (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑘) ∈ ℂ)
98abscld 14796 . . . . . . . . . 10 (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐹𝑘)) ∈ ℝ)
10 simpllr 774 . . . . . . . . . 10 (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → 𝑥 ∈ ℝ)
11 ltle 10729 . . . . . . . . . 10 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑘)) < 𝑥 → (abs‘(𝐹𝑘)) ≤ 𝑥))
129, 10, 11syl2anc 586 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐹𝑘)) < 𝑥 → (abs‘(𝐹𝑘)) ≤ 𝑥))
1312expimpd 456 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐹𝑘)) < 𝑥) → (abs‘(𝐹𝑘)) ≤ 𝑥))
1413ralimdva 3177 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) → (∀𝑘𝑍 ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐹𝑘)) < 𝑥) → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))
157, 14syl5bir 245 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) → ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥) → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))
1615exp4b 433 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → (𝑥 ∈ ℝ → (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥 → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))))
1716com23 86 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (𝑥 ∈ ℝ → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥 → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))))
18173impia 1113 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → (𝑥 ∈ ℝ → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥 → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)))
1918reximdvai 3272 . 2 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → (∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))
206, 19mpd 15 1 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139   class class class wbr 5066  dom cdm 5555  cfv 6355  (class class class)co 7156  cc 10535  cr 10536   < clt 10675  cle 10676  cmin 10870  cz 11982  cuz 12244  +crp 12390  abscabs 14593  cli 14841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845
This theorem is referenced by:  mtestbdd  24993  climbddf  41988  sge0isum  42729
  Copyright terms: Public domain W3C validator