Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  climbdd Structured version   Visualization version   GIF version

Theorem climbdd 14336
 Description: A converging sequence of complex numbers is bounded. (Contributed by Mario Carneiro, 9-Jul-2017.)
Hypothesis
Ref Expression
climcau.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
climbdd ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
Distinct variable groups:   𝑥,𝑘,𝐹   𝑘,𝑀,𝑥   𝑘,𝑍,𝑥

Proof of Theorem climbdd
Dummy variables 𝑗 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1061 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ)
2 climcau.1 . . . . 5 𝑍 = (ℤ𝑀)
32climcau 14335 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑦)
433adant3 1079 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑦)
52caubnd 14032 . . 3 ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑦) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥)
61, 4, 5syl2anc 692 . 2 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥)
7 r19.26 3057 . . . . . . 7 (∀𝑘𝑍 ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐹𝑘)) < 𝑥) ↔ (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥))
8 simpr 477 . . . . . . . . . . 11 (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑘) ∈ ℂ)
98abscld 14109 . . . . . . . . . 10 (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐹𝑘)) ∈ ℝ)
10 simpllr 798 . . . . . . . . . 10 (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → 𝑥 ∈ ℝ)
11 ltle 10070 . . . . . . . . . 10 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((abs‘(𝐹𝑘)) < 𝑥 → (abs‘(𝐹𝑘)) ≤ 𝑥))
129, 10, 11syl2anc 692 . . . . . . . . 9 (((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐹𝑘)) < 𝑥 → (abs‘(𝐹𝑘)) ≤ 𝑥))
1312expimpd 628 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) ∧ 𝑘𝑍) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐹𝑘)) < 𝑥) → (abs‘(𝐹𝑘)) ≤ 𝑥))
1413ralimdva 2956 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) → (∀𝑘𝑍 ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐹𝑘)) < 𝑥) → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))
157, 14syl5bir 233 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) ∧ 𝑥 ∈ ℝ) → ((∀𝑘𝑍 (𝐹𝑘) ∈ ℂ ∧ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥) → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))
1615exp4b 631 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → (𝑥 ∈ ℝ → (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥 → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))))
1716com23 86 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → (∀𝑘𝑍 (𝐹𝑘) ∈ ℂ → (𝑥 ∈ ℝ → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥 → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))))
18173impia 1258 . . 3 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → (𝑥 ∈ ℝ → (∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥 → ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)))
1918reximdvai 3009 . 2 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → (∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) < 𝑥 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥))
206, 19mpd 15 1 ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ∧ ∀𝑘𝑍 (𝐹𝑘) ∈ ℂ) → ∃𝑥 ∈ ℝ ∀𝑘𝑍 (abs‘(𝐹𝑘)) ≤ 𝑥)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908   class class class wbr 4613  dom cdm 5074  ‘cfv 5847  (class class class)co 6604  ℂcc 9878  ℝcr 9879   < clt 10018   ≤ cle 10019   − cmin 10210  ℤcz 11321  ℤ≥cuz 11631  ℝ+crp 11776  abscabs 13908   ⇝ cli 14149 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-clim 14153 This theorem is referenced by:  mtestbdd  24063  climbddf  39323  sge0isum  39951
 Copyright terms: Public domain W3C validator