MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlkf Structured version   Visualization version   GIF version

Theorem clwlkclwwlkf 27786
Description: 𝐹 is a function from the nonempty closed walks into the closed walks as word in a simple pseudograph. (Contributed by AV, 23-May-2022.) (Revised by AV, 29-Oct-2022.)
Hypotheses
Ref Expression
clwlkclwwlkf.c 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
clwlkclwwlkf.f 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
Assertion
Ref Expression
clwlkclwwlkf (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
Distinct variable groups:   𝑤,𝐺,𝑐   𝐶,𝑐
Allowed substitution hints:   𝐶(𝑤)   𝐹(𝑤,𝑐)

Proof of Theorem clwlkclwwlkf
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 clwlkclwwlkf.c . . . . 5 𝐶 = {𝑤 ∈ (ClWalks‘𝐺) ∣ 1 ≤ (♯‘(1st𝑤))}
2 eqid 2821 . . . . 5 (1st𝑐) = (1st𝑐)
3 eqid 2821 . . . . 5 (2nd𝑐) = (2nd𝑐)
41, 2, 3clwlkclwwlkflem 27782 . . . 4 (𝑐𝐶 → ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ))
5 isclwlk 27554 . . . . . . . 8 ((1st𝑐)(ClWalks‘𝐺)(2nd𝑐) ↔ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐)))))
6 fvex 6683 . . . . . . . . 9 (1st𝑐) ∈ V
7 breq1 5069 . . . . . . . . 9 (𝑓 = (1st𝑐) → (𝑓(ClWalks‘𝐺)(2nd𝑐) ↔ (1st𝑐)(ClWalks‘𝐺)(2nd𝑐)))
86, 7spcev 3607 . . . . . . . 8 ((1st𝑐)(ClWalks‘𝐺)(2nd𝑐) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
95, 8sylbir 237 . . . . . . 7 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐)))) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
1093adant3 1128 . . . . . 6 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
1110adantl 484 . . . . 5 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → ∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐))
12 simpl 485 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → 𝐺 ∈ USPGraph)
13 eqid 2821 . . . . . . . . 9 (Vtx‘𝐺) = (Vtx‘𝐺)
1413wlkpwrd 27399 . . . . . . . 8 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
15143ad2ant1 1129 . . . . . . 7 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
1615adantl 484 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → (2nd𝑐) ∈ Word (Vtx‘𝐺))
17 elnnnn0c 11943 . . . . . . . . . 10 ((♯‘(1st𝑐)) ∈ ℕ ↔ ((♯‘(1st𝑐)) ∈ ℕ0 ∧ 1 ≤ (♯‘(1st𝑐))))
18 nn0re 11907 . . . . . . . . . . . . . 14 ((♯‘(1st𝑐)) ∈ ℕ0 → (♯‘(1st𝑐)) ∈ ℝ)
19 1e2m1 11765 . . . . . . . . . . . . . . . . 17 1 = (2 − 1)
2019breq1i 5073 . . . . . . . . . . . . . . . 16 (1 ≤ (♯‘(1st𝑐)) ↔ (2 − 1) ≤ (♯‘(1st𝑐)))
2120biimpi 218 . . . . . . . . . . . . . . 15 (1 ≤ (♯‘(1st𝑐)) → (2 − 1) ≤ (♯‘(1st𝑐)))
22 2re 11712 . . . . . . . . . . . . . . . 16 2 ∈ ℝ
23 1re 10641 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
24 lesubadd 11112 . . . . . . . . . . . . . . . 16 ((2 ∈ ℝ ∧ 1 ∈ ℝ ∧ (♯‘(1st𝑐)) ∈ ℝ) → ((2 − 1) ≤ (♯‘(1st𝑐)) ↔ 2 ≤ ((♯‘(1st𝑐)) + 1)))
2522, 23, 24mp3an12 1447 . . . . . . . . . . . . . . 15 ((♯‘(1st𝑐)) ∈ ℝ → ((2 − 1) ≤ (♯‘(1st𝑐)) ↔ 2 ≤ ((♯‘(1st𝑐)) + 1)))
2621, 25syl5ib 246 . . . . . . . . . . . . . 14 ((♯‘(1st𝑐)) ∈ ℝ → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ ((♯‘(1st𝑐)) + 1)))
2718, 26syl 17 . . . . . . . . . . . . 13 ((♯‘(1st𝑐)) ∈ ℕ0 → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ ((♯‘(1st𝑐)) + 1)))
2827adantl 484 . . . . . . . . . . . 12 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ ((♯‘(1st𝑐)) + 1)))
29 wlklenvp1 27400 . . . . . . . . . . . . . 14 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (♯‘(2nd𝑐)) = ((♯‘(1st𝑐)) + 1))
3029adantr 483 . . . . . . . . . . . . 13 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (♯‘(2nd𝑐)) = ((♯‘(1st𝑐)) + 1))
3130breq2d 5078 . . . . . . . . . . . 12 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (2 ≤ (♯‘(2nd𝑐)) ↔ 2 ≤ ((♯‘(1st𝑐)) + 1)))
3228, 31sylibrd 261 . . . . . . . . . . 11 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ (♯‘(1st𝑐)) ∈ ℕ0) → (1 ≤ (♯‘(1st𝑐)) → 2 ≤ (♯‘(2nd𝑐))))
3332expimpd 456 . . . . . . . . . 10 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (((♯‘(1st𝑐)) ∈ ℕ0 ∧ 1 ≤ (♯‘(1st𝑐))) → 2 ≤ (♯‘(2nd𝑐))))
3417, 33syl5bi 244 . . . . . . . . 9 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → ((♯‘(1st𝑐)) ∈ ℕ → 2 ≤ (♯‘(2nd𝑐))))
3534a1d 25 . . . . . . . 8 ((1st𝑐)(Walks‘𝐺)(2nd𝑐) → (((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) → ((♯‘(1st𝑐)) ∈ ℕ → 2 ≤ (♯‘(2nd𝑐)))))
36353imp 1107 . . . . . . 7 (((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ) → 2 ≤ (♯‘(2nd𝑐)))
3736adantl 484 . . . . . 6 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → 2 ≤ (♯‘(2nd𝑐)))
38 eqid 2821 . . . . . . 7 (iEdg‘𝐺) = (iEdg‘𝐺)
3913, 38clwlkclwwlk 27780 . . . . . 6 ((𝐺 ∈ USPGraph ∧ (2nd𝑐) ∈ Word (Vtx‘𝐺) ∧ 2 ≤ (♯‘(2nd𝑐))) → (∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐) ↔ ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺))))
4012, 16, 37, 39syl3anc 1367 . . . . 5 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → (∃𝑓 𝑓(ClWalks‘𝐺)(2nd𝑐) ↔ ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺))))
4111, 40mpbid 234 . . . 4 ((𝐺 ∈ USPGraph ∧ ((1st𝑐)(Walks‘𝐺)(2nd𝑐) ∧ ((2nd𝑐)‘0) = ((2nd𝑐)‘(♯‘(1st𝑐))) ∧ (♯‘(1st𝑐)) ∈ ℕ)) → ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺)))
424, 41sylan2 594 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑐𝐶) → ((lastS‘(2nd𝑐)) = ((2nd𝑐)‘0) ∧ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺)))
4342simprd 498 . 2 ((𝐺 ∈ USPGraph ∧ 𝑐𝐶) → ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)) ∈ (ClWWalks‘𝐺))
44 clwlkclwwlkf.f . 2 𝐹 = (𝑐𝐶 ↦ ((2nd𝑐) prefix ((♯‘(2nd𝑐)) − 1)))
4543, 44fmptd 6878 1 (𝐺 ∈ USPGraph → 𝐹:𝐶⟶(ClWWalks‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {crab 3142   class class class wbr 5066  cmpt 5146  wf 6351  cfv 6355  (class class class)co 7156  1st c1st 7687  2nd c2nd 7688  cr 10536  0cc0 10537  1c1 10538   + caddc 10540  cle 10676  cmin 10870  cn 11638  2c2 11693  0cn0 11898  chash 13691  Word cword 13862  lastSclsw 13914   prefix cpfx 14032  Vtxcvtx 26781  iEdgciedg 26782  USPGraphcuspgr 26933  Walkscwlks 27378  ClWalkscclwlks 27551  ClWWalkscclwwlk 27759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-lsw 13915  df-substr 14003  df-pfx 14033  df-edg 26833  df-uhgr 26843  df-upgr 26867  df-uspgr 26935  df-wlks 27381  df-clwlks 27552  df-clwwlk 27760
This theorem is referenced by:  clwlkclwwlkfo  27787  clwlkclwwlkf1  27788
  Copyright terms: Public domain W3C validator