MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknonex2lem1 Structured version   Visualization version   GIF version

Theorem clwwlknonex2lem1 27886
Description: Lemma 1 for clwwlknonex2 27888: Transformation of a special half-open integer range into a union of a smaller half-open integer range and an unordered pair. This Lemma would not hold for 𝑁 = 2, i.e., (♯‘𝑊) = 0, because (0..^(((♯‘𝑊) + 2) − 1)) = (0..^((0 + 2) − 1)) = (0..^1) = {0} ≠ {-1, 0} = (∅ ∪ {-1, 0}) = ((0..^(0 − 1)) ∪ {(0 − 1), 0}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}). (Contributed by AV, 22-Sep-2018.) (Revised by AV, 26-Jan-2022.)
Assertion
Ref Expression
clwwlknonex2lem1 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))

Proof of Theorem clwwlknonex2lem1
StepHypRef Expression
1 eluzelcn 12256 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 𝑁 ∈ ℂ)
2 2cnd 11716 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → 2 ∈ ℂ)
31, 2subcld 10997 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (𝑁 − 2) ∈ ℂ)
43adantr 483 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (𝑁 − 2) ∈ ℂ)
5 eleq1 2900 . . . . . 6 ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) ∈ ℂ ↔ (𝑁 − 2) ∈ ℂ))
65adantl 484 . . . . 5 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) ∈ ℂ ↔ (𝑁 − 2) ∈ ℂ))
74, 6mpbird 259 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (♯‘𝑊) ∈ ℂ)
8 2cnd 11716 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → 2 ∈ ℂ)
9 1cnd 10636 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → 1 ∈ ℂ)
107, 8, 9addsubd 11018 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (((♯‘𝑊) + 2) − 1) = (((♯‘𝑊) − 1) + 2))
1110oveq2d 7172 . 2 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = (0..^(((♯‘𝑊) − 1) + 2)))
12 oveq1 7163 . . . . 5 ((♯‘𝑊) = (𝑁 − 2) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1))
1312adantl 484 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) = ((𝑁 − 2) − 1))
14 uznn0sub 12278 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (𝑁 − 3) ∈ ℕ0)
15 1cnd 10636 . . . . . . . 8 (𝑁 ∈ (ℤ‘3) → 1 ∈ ℂ)
161, 2, 15subsub4d 11028 . . . . . . 7 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) − 1) = (𝑁 − (2 + 1)))
17 2p1e3 11780 . . . . . . . 8 (2 + 1) = 3
1817oveq2i 7167 . . . . . . 7 (𝑁 − (2 + 1)) = (𝑁 − 3)
1916, 18syl6eq 2872 . . . . . 6 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) − 1) = (𝑁 − 3))
20 nn0uz 12281 . . . . . . . 8 0 = (ℤ‘0)
2120eqcomi 2830 . . . . . . 7 (ℤ‘0) = ℕ0
2221a1i 11 . . . . . 6 (𝑁 ∈ (ℤ‘3) → (ℤ‘0) = ℕ0)
2314, 19, 223eltr4d 2928 . . . . 5 (𝑁 ∈ (ℤ‘3) → ((𝑁 − 2) − 1) ∈ (ℤ‘0))
2423adantr 483 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((𝑁 − 2) − 1) ∈ (ℤ‘0))
2513, 24eqeltrd 2913 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
26 fzosplitpr 13147 . . 3 (((♯‘𝑊) − 1) ∈ (ℤ‘0) → (0..^(((♯‘𝑊) − 1) + 2)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)}))
2725, 26syl 17 . 2 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) − 1) + 2)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)}))
287, 9npcand 11001 . . . 4 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
2928preq2d 4676 . . 3 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)} = {((♯‘𝑊) − 1), (♯‘𝑊)})
3029uneq2d 4139 . 2 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (((♯‘𝑊) − 1) + 1)}) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))
3111, 27, 303eqtrd 2860 1 ((𝑁 ∈ (ℤ‘3) ∧ (♯‘𝑊) = (𝑁 − 2)) → (0..^(((♯‘𝑊) + 2) − 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1), (♯‘𝑊)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cun 3934  {cpr 4569  cfv 6355  (class class class)co 7156  cc 10535  0cc0 10537  1c1 10538   + caddc 10540  cmin 10870  2c2 11693  3c3 11694  0cn0 11898  cuz 12244  ..^cfzo 13034  chash 13691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035
This theorem is referenced by:  clwwlknonex2  27888
  Copyright terms: Public domain W3C validator