MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crngridl Structured version   Visualization version   GIF version

Theorem crngridl 19286
Description: In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
crng2idl.i 𝐼 = (LIdeal‘𝑅)
crngridl.o 𝑂 = (oppr𝑅)
Assertion
Ref Expression
crngridl (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂))

Proof of Theorem crngridl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crng2idl.i . 2 𝐼 = (LIdeal‘𝑅)
2 eqidd 2652 . . . 4 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑅))
3 crngridl.o . . . . . 6 𝑂 = (oppr𝑅)
4 eqid 2651 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
53, 4opprbas 18675 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
65a1i 11 . . . 4 (𝑅 ∈ CRing → (Base‘𝑅) = (Base‘𝑂))
7 ssv 3658 . . . . 5 (Base‘𝑅) ⊆ V
87a1i 11 . . . 4 (𝑅 ∈ CRing → (Base‘𝑅) ⊆ V)
9 eqid 2651 . . . . . . 7 (+g𝑅) = (+g𝑅)
103, 9oppradd 18676 . . . . . 6 (+g𝑅) = (+g𝑂)
1110oveqi 6703 . . . . 5 (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑂)𝑦)
1211a1i 11 . . . 4 ((𝑅 ∈ CRing ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) → (𝑥(+g𝑅)𝑦) = (𝑥(+g𝑂)𝑦))
13 ovexd 6720 . . . 4 ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) ∈ V)
14 eqid 2651 . . . . . 6 (.r𝑅) = (.r𝑅)
15 eqid 2651 . . . . . 6 (.r𝑂) = (.r𝑂)
164, 14, 3, 15crngoppr 18673 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑂)𝑦))
17163expb 1285 . . . 4 ((𝑅 ∈ CRing ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(.r𝑅)𝑦) = (𝑥(.r𝑂)𝑦))
182, 6, 8, 12, 13, 17lidlrsppropd 19278 . . 3 (𝑅 ∈ CRing → ((LIdeal‘𝑅) = (LIdeal‘𝑂) ∧ (RSpan‘𝑅) = (RSpan‘𝑂)))
1918simpld 474 . 2 (𝑅 ∈ CRing → (LIdeal‘𝑅) = (LIdeal‘𝑂))
201, 19syl5eq 2697 1 (𝑅 ∈ CRing → 𝐼 = (LIdeal‘𝑂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  wss 3607  cfv 5926  (class class class)co 6690  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  CRingccrg 18594  opprcoppr 18668  LIdealclidl 19218  RSpancrsp 19219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-cmn 18241  df-mgp 18536  df-cring 18596  df-oppr 18669  df-lss 18981  df-lsp 19020  df-sra 19220  df-rgmod 19221  df-lidl 19222  df-rsp 19223
This theorem is referenced by:  crng2idl  19287
  Copyright terms: Public domain W3C validator