Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldioph3b Structured version   Visualization version   GIF version

Theorem eldioph3b 39382
Description: Define Diophantine sets in terms of polynomials with variables indexed by . This avoids a quantifier over the number of witness variables and will be easier to use than eldiophb 39374 in most cases. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Assertion
Ref Expression
eldioph3b (𝐴 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
Distinct variable groups:   𝐴,𝑝,𝑡,𝑢   𝑁,𝑝,𝑡,𝑢

Proof of Theorem eldioph3b
StepHypRef Expression
1 eldiophelnn0 39381 . 2 (𝐴 ∈ (Dioph‘𝑁) → 𝑁 ∈ ℕ0)
2 nnex 11644 . . 3 ℕ ∈ V
3 1z 12013 . . . . 5 1 ∈ ℤ
4 nnuz 12282 . . . . . 6 ℕ = (ℤ‘1)
54uzinf 13334 . . . . 5 (1 ∈ ℤ → ¬ ℕ ∈ Fin)
63, 5ax-mp 5 . . . 4 ¬ ℕ ∈ Fin
7 elfznn 12937 . . . . 5 (𝑝 ∈ (1...𝑁) → 𝑝 ∈ ℕ)
87ssriv 3971 . . . 4 (1...𝑁) ⊆ ℕ
9 eldioph2b 39380 . . . 4 (((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) ∧ (¬ ℕ ∈ Fin ∧ (1...𝑁) ⊆ ℕ)) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
106, 8, 9mpanr12 703 . . 3 ((𝑁 ∈ ℕ0 ∧ ℕ ∈ V) → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
112, 10mpan2 689 . 2 (𝑁 ∈ ℕ0 → (𝐴 ∈ (Dioph‘𝑁) ↔ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
121, 11biadanii 820 1 (𝐴 ∈ (Dioph‘𝑁) ↔ (𝑁 ∈ ℕ0 ∧ ∃𝑝 ∈ (mzPoly‘ℕ)𝐴 = {𝑡 ∣ ∃𝑢 ∈ (ℕ0m ℕ)(𝑡 = (𝑢 ↾ (1...𝑁)) ∧ (𝑝𝑢) = 0)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398   = wceq 1537  wcel 2114  {cab 2799  wrex 3139  Vcvv 3494  wss 3936  cres 5557  cfv 6355  (class class class)co 7156  m cmap 8406  Fincfn 8509  0cc0 10537  1c1 10538  cn 11638  0cn0 11898  cz 11982  ...cfz 12893  mzPolycmzp 39339  Diophcdioph 39372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692  df-mzpcl 39340  df-mzp 39341  df-dioph 39373
This theorem is referenced by:  eldioph3  39383  eldiophss  39391  diophrex  39392
  Copyright terms: Public domain W3C validator