Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdivpm Structured version   Visualization version   GIF version

Theorem fdivpm 42157
Description: The quotient of two functions into the complex numbers is a partial function. (Contributed by AV, 16-May-2020.)
Assertion
Ref Expression
fdivpm ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) ∈ (ℂ ↑pm 𝐴))

Proof of Theorem fdivpm
StepHypRef Expression
1 cnex 9874 . . 3 ℂ ∈ V
21a1i 11 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → ℂ ∈ V)
3 simp3 1055 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐴𝑉)
4 fdivmptf 42155 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ)
5 suppssdm 7173 . . 3 (𝐺 supp 0) ⊆ dom 𝐺
6 fdm 5950 . . . . 5 (𝐺:𝐴⟶ℂ → dom 𝐺 = 𝐴)
76eqcomd 2615 . . . 4 (𝐺:𝐴⟶ℂ → 𝐴 = dom 𝐺)
873ad2ant2 1075 . . 3 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → 𝐴 = dom 𝐺)
95, 8syl5sseqr 3616 . 2 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐺 supp 0) ⊆ 𝐴)
10 elpm2r 7739 . 2 (((ℂ ∈ V ∧ 𝐴𝑉) ∧ ((𝐹 /f 𝐺):(𝐺 supp 0)⟶ℂ ∧ (𝐺 supp 0) ⊆ 𝐴)) → (𝐹 /f 𝐺) ∈ (ℂ ↑pm 𝐴))
112, 3, 4, 9, 10syl22anc 1318 1 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) ∈ (ℂ ↑pm 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1030   = wceq 1474  wcel 1976  Vcvv 3172  wss 3539  dom cdm 5028  wf 5786  (class class class)co 6527   supp csupp 7160  pm cpm 7723  cc 9791  0cc0 9793   /f cfdiv 42151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-po 4949  df-so 4950  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-supp 7161  df-er 7607  df-pm 7725  df-en 7820  df-dom 7821  df-sdom 7822  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-fdiv 42152
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator