MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem12 Structured version   Visualization version   GIF version

Theorem fin1a2lem12 9218
Description: Lemma for fin1a2 9222. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin1a2lem12 (((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ¬ 𝐵 ∈ FinIII)

Proof of Theorem fin1a2lem12
Dummy variables 𝑑 𝑒 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝐵 ∈ FinIII)
2 simpll1 1098 . . . . . . 7 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝐴 ⊆ 𝒫 𝐵)
32adantr 481 . . . . . 6 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → 𝐴 ⊆ 𝒫 𝐵)
4 ssrab2 3679 . . . . . . . 8 {𝑓𝐴𝑓𝑒} ⊆ 𝐴
54unissi 4452 . . . . . . 7 {𝑓𝐴𝑓𝑒} ⊆ 𝐴
6 sspwuni 4602 . . . . . . . 8 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
76biimpi 206 . . . . . . 7 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
85, 7syl5ss 3606 . . . . . 6 (𝐴 ⊆ 𝒫 𝐵 {𝑓𝐴𝑓𝑒} ⊆ 𝐵)
93, 8syl 17 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → {𝑓𝐴𝑓𝑒} ⊆ 𝐵)
10 elpw2g 4818 . . . . . 6 (𝐵 ∈ FinIII → ( {𝑓𝐴𝑓𝑒} ∈ 𝒫 𝐵 {𝑓𝐴𝑓𝑒} ⊆ 𝐵))
1110ad2antlr 762 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → ( {𝑓𝐴𝑓𝑒} ∈ 𝒫 𝐵 {𝑓𝐴𝑓𝑒} ⊆ 𝐵))
129, 11mpbird 247 . . . 4 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑒 ∈ ω) → {𝑓𝐴𝑓𝑒} ∈ 𝒫 𝐵)
13 eqid 2620 . . . 4 (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})
1412, 13fmptd 6371 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}):ω⟶𝒫 𝐵)
15 vex 3198 . . . . . . . . . . 11 𝑑 ∈ V
1615sucex 6996 . . . . . . . . . 10 suc 𝑑 ∈ V
17 sssucid 5790 . . . . . . . . . 10 𝑑 ⊆ suc 𝑑
18 ssdomg 7986 . . . . . . . . . 10 (suc 𝑑 ∈ V → (𝑑 ⊆ suc 𝑑𝑑 ≼ suc 𝑑))
1916, 17, 18mp2 9 . . . . . . . . 9 𝑑 ≼ suc 𝑑
20 domtr 7994 . . . . . . . . 9 ((𝑓𝑑𝑑 ≼ suc 𝑑) → 𝑓 ≼ suc 𝑑)
2119, 20mpan2 706 . . . . . . . 8 (𝑓𝑑𝑓 ≼ suc 𝑑)
2221a1i 11 . . . . . . 7 (𝑓𝐴 → (𝑓𝑑𝑓 ≼ suc 𝑑))
2322ss2rabi 3676 . . . . . 6 {𝑓𝐴𝑓𝑑} ⊆ {𝑓𝐴𝑓 ≼ suc 𝑑}
24 uniss 4449 . . . . . 6 ({𝑓𝐴𝑓𝑑} ⊆ {𝑓𝐴𝑓 ≼ suc 𝑑} → {𝑓𝐴𝑓𝑑} ⊆ {𝑓𝐴𝑓 ≼ suc 𝑑})
2523, 24mp1i 13 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → {𝑓𝐴𝑓𝑑} ⊆ {𝑓𝐴𝑓 ≼ suc 𝑑})
26 id 22 . . . . . 6 (𝑑 ∈ ω → 𝑑 ∈ ω)
27 pwexg 4841 . . . . . . . . 9 (𝐵 ∈ FinIII → 𝒫 𝐵 ∈ V)
2827adantl 482 . . . . . . . 8 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝒫 𝐵 ∈ V)
2928, 2ssexd 4796 . . . . . . 7 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝐴 ∈ V)
30 rabexg 4803 . . . . . . 7 (𝐴 ∈ V → {𝑓𝐴𝑓𝑑} ∈ V)
31 uniexg 6940 . . . . . . 7 ({𝑓𝐴𝑓𝑑} ∈ V → {𝑓𝐴𝑓𝑑} ∈ V)
3229, 30, 313syl 18 . . . . . 6 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → {𝑓𝐴𝑓𝑑} ∈ V)
33 breq2 4648 . . . . . . . . 9 (𝑒 = 𝑑 → (𝑓𝑒𝑓𝑑))
3433rabbidv 3184 . . . . . . . 8 (𝑒 = 𝑑 → {𝑓𝐴𝑓𝑒} = {𝑓𝐴𝑓𝑑})
3534unieqd 4437 . . . . . . 7 (𝑒 = 𝑑 {𝑓𝐴𝑓𝑒} = {𝑓𝐴𝑓𝑑})
3635, 13fvmptg 6267 . . . . . 6 ((𝑑 ∈ ω ∧ {𝑓𝐴𝑓𝑑} ∈ V) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) = {𝑓𝐴𝑓𝑑})
3726, 32, 36syl2anr 495 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) = {𝑓𝐴𝑓𝑑})
38 peano2 7071 . . . . . 6 (𝑑 ∈ ω → suc 𝑑 ∈ ω)
39 rabexg 4803 . . . . . . 7 (𝐴 ∈ V → {𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V)
40 uniexg 6940 . . . . . . 7 ({𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V → {𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V)
4129, 39, 403syl 18 . . . . . 6 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → {𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V)
42 breq2 4648 . . . . . . . . 9 (𝑒 = suc 𝑑 → (𝑓𝑒𝑓 ≼ suc 𝑑))
4342rabbidv 3184 . . . . . . . 8 (𝑒 = suc 𝑑 → {𝑓𝐴𝑓𝑒} = {𝑓𝐴𝑓 ≼ suc 𝑑})
4443unieqd 4437 . . . . . . 7 (𝑒 = suc 𝑑 {𝑓𝐴𝑓𝑒} = {𝑓𝐴𝑓 ≼ suc 𝑑})
4544, 13fvmptg 6267 . . . . . 6 ((suc 𝑑 ∈ ω ∧ {𝑓𝐴𝑓 ≼ suc 𝑑} ∈ V) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑) = {𝑓𝐴𝑓 ≼ suc 𝑑})
4638, 41, 45syl2anr 495 . . . . 5 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑) = {𝑓𝐴𝑓 ≼ suc 𝑑})
4725, 37, 463sstr4d 3640 . . . 4 (((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) ∧ 𝑑 ∈ ω) → ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) ⊆ ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑))
4847ralrimiva 2963 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ∀𝑑 ∈ ω ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) ⊆ ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑))
49 fin34i 9188 . . 3 ((𝐵 ∈ FinIII ∧ (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}):ω⟶𝒫 𝐵 ∧ ∀𝑑 ∈ ω ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘𝑑) ⊆ ((𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})‘suc 𝑑)) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}))
501, 14, 48, 49syl3anc 1324 . 2 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}))
51 fin1a2lem11 9217 . . . . . 6 (( [] Or 𝐴𝐴 ⊆ Fin) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
5251adantrr 752 . . . . 5 (( [] Or 𝐴 ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
53523ad2antl2 1222 . . . 4 (((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
5453adantr 481 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
55 simpll3 1100 . . . . . 6 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ 𝐴𝐴)
56 simplrr 800 . . . . . . 7 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → 𝐴 ≠ ∅)
57 sspwuni 4602 . . . . . . . . . . 11 (𝐴 ⊆ 𝒫 ∅ ↔ 𝐴 ⊆ ∅)
58 ss0b 3964 . . . . . . . . . . 11 ( 𝐴 ⊆ ∅ ↔ 𝐴 = ∅)
5957, 58bitri 264 . . . . . . . . . 10 (𝐴 ⊆ 𝒫 ∅ ↔ 𝐴 = ∅)
60 pw0 4334 . . . . . . . . . . . . 13 𝒫 ∅ = {∅}
6160sseq2i 3622 . . . . . . . . . . . 12 (𝐴 ⊆ 𝒫 ∅ ↔ 𝐴 ⊆ {∅})
62 sssn 4349 . . . . . . . . . . . 12 (𝐴 ⊆ {∅} ↔ (𝐴 = ∅ ∨ 𝐴 = {∅}))
6361, 62bitri 264 . . . . . . . . . . 11 (𝐴 ⊆ 𝒫 ∅ ↔ (𝐴 = ∅ ∨ 𝐴 = {∅}))
64 df-ne 2792 . . . . . . . . . . . 12 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
65 0ex 4781 . . . . . . . . . . . . . . . . 17 ∅ ∈ V
6665unisn 4442 . . . . . . . . . . . . . . . 16 {∅} = ∅
6765snid 4199 . . . . . . . . . . . . . . . 16 ∅ ∈ {∅}
6866, 67eqeltri 2695 . . . . . . . . . . . . . . 15 {∅} ∈ {∅}
69 unieq 4435 . . . . . . . . . . . . . . . 16 (𝐴 = {∅} → 𝐴 = {∅})
70 id 22 . . . . . . . . . . . . . . . 16 (𝐴 = {∅} → 𝐴 = {∅})
7169, 70eleq12d 2693 . . . . . . . . . . . . . . 15 (𝐴 = {∅} → ( 𝐴𝐴 {∅} ∈ {∅}))
7268, 71mpbiri 248 . . . . . . . . . . . . . 14 (𝐴 = {∅} → 𝐴𝐴)
7372orim2i 540 . . . . . . . . . . . . 13 ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (𝐴 = ∅ ∨ 𝐴𝐴))
7473ord 392 . . . . . . . . . . . 12 ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (¬ 𝐴 = ∅ → 𝐴𝐴))
7564, 74syl5bi 232 . . . . . . . . . . 11 ((𝐴 = ∅ ∨ 𝐴 = {∅}) → (𝐴 ≠ ∅ → 𝐴𝐴))
7663, 75sylbi 207 . . . . . . . . . 10 (𝐴 ⊆ 𝒫 ∅ → (𝐴 ≠ ∅ → 𝐴𝐴))
7759, 76sylbir 225 . . . . . . . . 9 ( 𝐴 = ∅ → (𝐴 ≠ ∅ → 𝐴𝐴))
7877com12 32 . . . . . . . 8 (𝐴 ≠ ∅ → ( 𝐴 = ∅ → 𝐴𝐴))
7978con3d 148 . . . . . . 7 (𝐴 ≠ ∅ → (¬ 𝐴𝐴 → ¬ 𝐴 = ∅))
8056, 55, 79sylc 65 . . . . . 6 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ 𝐴 = ∅)
81 ioran 511 . . . . . 6 (¬ ( 𝐴𝐴 𝐴 = ∅) ↔ (¬ 𝐴𝐴 ∧ ¬ 𝐴 = ∅))
8255, 80, 81sylanbrc 697 . . . . 5 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ ( 𝐴𝐴 𝐴 = ∅))
83 uniun 4447 . . . . . . . 8 (𝐴 ∪ {∅}) = ( 𝐴 {∅})
8466uneq2i 3756 . . . . . . . 8 ( 𝐴 {∅}) = ( 𝐴 ∪ ∅)
85 un0 3958 . . . . . . . 8 ( 𝐴 ∪ ∅) = 𝐴
8683, 84, 853eqtri 2646 . . . . . . 7 (𝐴 ∪ {∅}) = 𝐴
8786eleq1i 2690 . . . . . 6 ( (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅}) ↔ 𝐴 ∈ (𝐴 ∪ {∅}))
88 elun 3745 . . . . . 6 ( 𝐴 ∈ (𝐴 ∪ {∅}) ↔ ( 𝐴𝐴 𝐴 ∈ {∅}))
8965elsn2 4202 . . . . . . 7 ( 𝐴 ∈ {∅} ↔ 𝐴 = ∅)
9089orbi2i 541 . . . . . 6 (( 𝐴𝐴 𝐴 ∈ {∅}) ↔ ( 𝐴𝐴 𝐴 = ∅))
9187, 88, 903bitri 286 . . . . 5 ( (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅}) ↔ ( 𝐴𝐴 𝐴 = ∅))
9282, 91sylnibr 319 . . . 4 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅}))
93 unieq 4435 . . . . . 6 (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
94 id 22 . . . . . 6 (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}))
9593, 94eleq12d 2693 . . . . 5 (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → ( ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ↔ (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅})))
9695notbid 308 . . . 4 (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → (¬ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ↔ ¬ (𝐴 ∪ {∅}) ∈ (𝐴 ∪ {∅})))
9792, 96syl5ibrcom 237 . . 3 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → (ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) = (𝐴 ∪ {∅}) → ¬ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒})))
9854, 97mpd 15 . 2 ((((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) ∧ 𝐵 ∈ FinIII) → ¬ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}) ∈ ran (𝑒 ∈ ω ↦ {𝑓𝐴𝑓𝑒}))
9950, 98pm2.65da 599 1 (((𝐴 ⊆ 𝒫 𝐵 ∧ [] Or 𝐴 ∧ ¬ 𝐴𝐴) ∧ (𝐴 ⊆ Fin ∧ 𝐴 ≠ ∅)) → ¬ 𝐵 ∈ FinIII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1481  wcel 1988  wne 2791  wral 2909  {crab 2913  Vcvv 3195  cun 3565  wss 3567  c0 3907  𝒫 cpw 4149  {csn 4168   cuni 4427   class class class wbr 4644  cmpt 4720   Or wor 5024  ran crn 5105  suc csuc 5713  wf 5872  cfv 5876   [] crpss 6921  ωcom 7050  cdom 7938  Fincfn 7940  FinIIIcfin3 9088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-rpss 6922  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-wdom 8449  df-card 8750  df-fin4 9094  df-fin3 9095
This theorem is referenced by:  fin1a2s  9221
  Copyright terms: Public domain W3C validator