Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finxpsuclem Structured version   Visualization version   GIF version

Theorem finxpsuclem 34681
Description: Lemma for finxpsuc 34682. (Contributed by ML, 24-Oct-2020.)
Hypothesis
Ref Expression
finxpsuclem.1 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
Assertion
Ref Expression
finxpsuclem ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))
Distinct variable groups:   𝑛,𝑁,𝑥   𝑈,𝑛,𝑥
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem finxpsuclem
Dummy variables 𝑧 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano2 7602 . . . . . . . . . 10 (𝑁 ∈ ω → suc 𝑁 ∈ ω)
21adantr 483 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 1o𝑁) → suc 𝑁 ∈ ω)
3 1on 8109 . . . . . . . . . . . . 13 1o ∈ On
43onordi 6295 . . . . . . . . . . . 12 Ord 1o
5 nnord 7588 . . . . . . . . . . . 12 (𝑁 ∈ ω → Ord 𝑁)
6 ordsseleq 6220 . . . . . . . . . . . 12 ((Ord 1o ∧ Ord 𝑁) → (1o𝑁 ↔ (1o𝑁 ∨ 1o = 𝑁)))
74, 5, 6sylancr 589 . . . . . . . . . . 11 (𝑁 ∈ ω → (1o𝑁 ↔ (1o𝑁 ∨ 1o = 𝑁)))
87biimpa 479 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 1o𝑁) → (1o𝑁 ∨ 1o = 𝑁))
9 elelsuc 6263 . . . . . . . . . . . . 13 (1o𝑁 → 1o ∈ suc 𝑁)
109a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ω → (1o𝑁 → 1o ∈ suc 𝑁))
11 sucidg 6269 . . . . . . . . . . . . 13 (𝑁 ∈ ω → 𝑁 ∈ suc 𝑁)
12 eleq1 2900 . . . . . . . . . . . . 13 (1o = 𝑁 → (1o ∈ suc 𝑁𝑁 ∈ suc 𝑁))
1311, 12syl5ibrcom 249 . . . . . . . . . . . 12 (𝑁 ∈ ω → (1o = 𝑁 → 1o ∈ suc 𝑁))
1410, 13jaod 855 . . . . . . . . . . 11 (𝑁 ∈ ω → ((1o𝑁 ∨ 1o = 𝑁) → 1o ∈ suc 𝑁))
1514adantr 483 . . . . . . . . . 10 ((𝑁 ∈ ω ∧ 1o𝑁) → ((1o𝑁 ∨ 1o = 𝑁) → 1o ∈ suc 𝑁))
168, 15mpd 15 . . . . . . . . 9 ((𝑁 ∈ ω ∧ 1o𝑁) → 1o ∈ suc 𝑁)
17 finxpsuclem.1 . . . . . . . . . 10 𝐹 = (𝑛 ∈ ω, 𝑥 ∈ V ↦ if((𝑛 = 1o𝑥𝑈), ∅, if(𝑥 ∈ (V × 𝑈), ⟨ 𝑛, (1st𝑥)⟩, ⟨𝑛, 𝑥⟩)))
1817finxpreclem6 34680 . . . . . . . . 9 ((suc 𝑁 ∈ ω ∧ 1o ∈ suc 𝑁) → (𝑈↑↑suc 𝑁) ⊆ (V × 𝑈))
192, 16, 18syl2anc 586 . . . . . . . 8 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑suc 𝑁) ⊆ (V × 𝑈))
2019sselda 3967 . . . . . . 7 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (𝑈↑↑suc 𝑁)) → 𝑦 ∈ (V × 𝑈))
211ad2antrr 724 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → suc 𝑁 ∈ ω)
22 df-2o 8103 . . . . . . . . . . . . . . 15 2o = suc 1o
23 ordsucsssuc 7538 . . . . . . . . . . . . . . . . 17 ((Ord 1o ∧ Ord 𝑁) → (1o𝑁 ↔ suc 1o ⊆ suc 𝑁))
244, 5, 23sylancr 589 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ω → (1o𝑁 ↔ suc 1o ⊆ suc 𝑁))
2524biimpa 479 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ω ∧ 1o𝑁) → suc 1o ⊆ suc 𝑁)
2622, 25eqsstrid 4015 . . . . . . . . . . . . . 14 ((𝑁 ∈ ω ∧ 1o𝑁) → 2o ⊆ suc 𝑁)
2726adantr 483 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → 2o ⊆ suc 𝑁)
28 simpr 487 . . . . . . . . . . . . 13 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → 𝑦 ∈ (V × 𝑈))
2917finxpreclem4 34678 . . . . . . . . . . . . 13 (((suc 𝑁 ∈ ω ∧ 2o ⊆ suc 𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) = (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁))
3021, 27, 28, 29syl21anc 835 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) = (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁))
31 ordunisuc 7547 . . . . . . . . . . . . . . . 16 (Ord 𝑁 suc 𝑁 = 𝑁)
325, 31syl 17 . . . . . . . . . . . . . . 15 (𝑁 ∈ ω → suc 𝑁 = 𝑁)
33 opeq1 4803 . . . . . . . . . . . . . . . 16 ( suc 𝑁 = 𝑁 → ⟨ suc 𝑁, (1st𝑦)⟩ = ⟨𝑁, (1st𝑦)⟩)
34 rdgeq2 8048 . . . . . . . . . . . . . . . 16 (⟨ suc 𝑁, (1st𝑦)⟩ = ⟨𝑁, (1st𝑦)⟩ → rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
3533, 34syl 17 . . . . . . . . . . . . . . 15 ( suc 𝑁 = 𝑁 → rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
3632, 35syl 17 . . . . . . . . . . . . . 14 (𝑁 ∈ ω → rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
3736, 32fveq12d 6677 . . . . . . . . . . . . 13 (𝑁 ∈ ω → (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
3837ad2antrr 724 . . . . . . . . . . . 12 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨ suc 𝑁, (1st𝑦)⟩)‘ suc 𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
3930, 38eqtrd 2856 . . . . . . . . . . 11 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
4039eqeq2d 2832 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
411biantrurd 535 . . . . . . . . . . . 12 (𝑁 ∈ ω → (∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁) ↔ (suc 𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁))))
4217dffinxpf 34669 . . . . . . . . . . . . 13 (𝑈↑↑suc 𝑁) = {𝑦 ∣ (suc 𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁))}
4342abeq2i 2948 . . . . . . . . . . . 12 (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ (suc 𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁)))
4441, 43syl6rbbr 292 . . . . . . . . . . 11 (𝑁 ∈ ω → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁)))
4544ad2antrr 724 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ ∅ = (rec(𝐹, ⟨suc 𝑁, 𝑦⟩)‘suc 𝑁)))
46 fvex 6683 . . . . . . . . . . . . 13 (1st𝑦) ∈ V
47 opeq2 4804 . . . . . . . . . . . . . . . . 17 (𝑧 = (1st𝑦) → ⟨𝑁, 𝑧⟩ = ⟨𝑁, (1st𝑦)⟩)
48 rdgeq2 8048 . . . . . . . . . . . . . . . . 17 (⟨𝑁, 𝑧⟩ = ⟨𝑁, (1st𝑦)⟩ → rec(𝐹, ⟨𝑁, 𝑧⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
4947, 48syl 17 . . . . . . . . . . . . . . . 16 (𝑧 = (1st𝑦) → rec(𝐹, ⟨𝑁, 𝑧⟩) = rec(𝐹, ⟨𝑁, (1st𝑦)⟩))
5049fveq1d 6672 . . . . . . . . . . . . . . 15 (𝑧 = (1st𝑦) → (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁) = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))
5150eqeq2d 2832 . . . . . . . . . . . . . 14 (𝑧 = (1st𝑦) → (∅ = (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5251anbi2d 630 . . . . . . . . . . . . 13 (𝑧 = (1st𝑦) → ((𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁)) ↔ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁))))
5317dffinxpf 34669 . . . . . . . . . . . . 13 (𝑈↑↑𝑁) = {𝑧 ∣ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, 𝑧⟩)‘𝑁))}
5446, 52, 53elab2 3670 . . . . . . . . . . . 12 ((1st𝑦) ∈ (𝑈↑↑𝑁) ↔ (𝑁 ∈ ω ∧ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5554baib 538 . . . . . . . . . . 11 (𝑁 ∈ ω → ((1st𝑦) ∈ (𝑈↑↑𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5655ad2antrr 724 . . . . . . . . . 10 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → ((1st𝑦) ∈ (𝑈↑↑𝑁) ↔ ∅ = (rec(𝐹, ⟨𝑁, (1st𝑦)⟩)‘𝑁)))
5740, 45, 563bitr4d 313 . . . . . . . . 9 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ (1st𝑦) ∈ (𝑈↑↑𝑁)))
5857biimpd 231 . . . . . . . 8 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → (1st𝑦) ∈ (𝑈↑↑𝑁)))
5958impancom 454 . . . . . . 7 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (𝑈↑↑suc 𝑁)) → (𝑦 ∈ (V × 𝑈) → (1st𝑦) ∈ (𝑈↑↑𝑁)))
6020, 59mpd 15 . . . . . 6 (((𝑁 ∈ ω ∧ 1o𝑁) ∧ 𝑦 ∈ (𝑈↑↑suc 𝑁)) → (1st𝑦) ∈ (𝑈↑↑𝑁))
6160ex 415 . . . . 5 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → (1st𝑦) ∈ (𝑈↑↑𝑁)))
6220ex 415 . . . . 5 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → 𝑦 ∈ (V × 𝑈)))
6361, 62jcad 515 . . . 4 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) → ((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈))))
6457exbiri 809 . . . . . 6 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (V × 𝑈) → ((1st𝑦) ∈ (𝑈↑↑𝑁) → 𝑦 ∈ (𝑈↑↑suc 𝑁))))
6564impd 413 . . . . 5 ((𝑁 ∈ ω ∧ 1o𝑁) → ((𝑦 ∈ (V × 𝑈) ∧ (1st𝑦) ∈ (𝑈↑↑𝑁)) → 𝑦 ∈ (𝑈↑↑suc 𝑁)))
6665ancomsd 468 . . . 4 ((𝑁 ∈ ω ∧ 1o𝑁) → (((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈)) → 𝑦 ∈ (𝑈↑↑suc 𝑁)))
6763, 66impbid 214 . . 3 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ ((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈))))
68 elxp8 34655 . . 3 (𝑦 ∈ ((𝑈↑↑𝑁) × 𝑈) ↔ ((1st𝑦) ∈ (𝑈↑↑𝑁) ∧ 𝑦 ∈ (V × 𝑈)))
6967, 68syl6bbr 291 . 2 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑦 ∈ (𝑈↑↑suc 𝑁) ↔ 𝑦 ∈ ((𝑈↑↑𝑁) × 𝑈)))
7069eqrdv 2819 1 ((𝑁 ∈ ω ∧ 1o𝑁) → (𝑈↑↑suc 𝑁) = ((𝑈↑↑𝑁) × 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  Vcvv 3494  wss 3936  c0 4291  ifcif 4467  cop 4573   cuni 4838   × cxp 5553  Ord word 6190  suc csuc 6193  cfv 6355  cmpo 7158  ωcom 7580  1st c1st 7687  reccrdg 8045  1oc1o 8095  2oc2o 8096  ↑↑cfinxp 34667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-finxp 34668
This theorem is referenced by:  finxpsuc  34682
  Copyright terms: Public domain W3C validator