MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr2wwlkeqm Structured version   Visualization version   GIF version

Theorem frgr2wwlkeqm 28110
Description: If there is a (simple) path of length 2 from one vertex to another vertex and a (simple) path of length 2 from the other vertex back to the first vertex in a friendship graph, then the middle vertex is the same. This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 20-Feb-2018.) (Revised by AV, 13-May-2021.) (Proof shortened by AV, 7-Jan-2022.)
Assertion
Ref Expression
frgr2wwlkeqm ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → ((⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → 𝑄 = 𝑃))

Proof of Theorem frgr2wwlkeqm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3l 1197 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → 𝑃𝑋)
2 eqid 2821 . . . . 5 (Vtx‘𝐺) = (Vtx‘𝐺)
32wwlks2onv 27732 . . . 4 ((𝑃𝑋 ∧ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
41, 3sylan 582 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
5 simp3r 1198 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → 𝑄𝑌)
62wwlks2onv 27732 . . . . . . . 8 ((𝑄𝑌 ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
75, 6sylan 582 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
8 frgrusgr 28040 . . . . . . . . . . . . . . 15 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
9 usgrumgr 26964 . . . . . . . . . . . . . . 15 (𝐺 ∈ USGraph → 𝐺 ∈ UMGraph)
108, 9syl 17 . . . . . . . . . . . . . 14 (𝐺 ∈ FriendGraph → 𝐺 ∈ UMGraph)
11103ad2ant1 1129 . . . . . . . . . . . . 13 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → 𝐺 ∈ UMGraph)
12 simpr3 1192 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → 𝐵 ∈ (Vtx‘𝐺))
13 simpl 485 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → 𝑄 ∈ (Vtx‘𝐺))
14 simpr1 1190 . . . . . . . . . . . . . 14 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → 𝐴 ∈ (Vtx‘𝐺))
1512, 13, 143jca 1124 . . . . . . . . . . . . 13 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)))
162wwlks2onsym 27737 . . . . . . . . . . . . 13 ((𝐺 ∈ UMGraph ∧ (𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺))) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) ↔ ⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
1711, 15, 16syl2anr 598 . . . . . . . . . . . 12 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) ↔ ⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
18 simpr1 1190 . . . . . . . . . . . . . 14 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → 𝐺 ∈ FriendGraph )
19 3simpb 1145 . . . . . . . . . . . . . . 15 ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
2019ad2antlr 725 . . . . . . . . . . . . . 14 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)))
21 simpr2 1191 . . . . . . . . . . . . . 14 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → 𝐴𝐵)
222frgr2wwlkeu 28106 . . . . . . . . . . . . . 14 ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) ∧ 𝐴𝐵) → ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
2318, 20, 21, 22syl3anc 1367 . . . . . . . . . . . . 13 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
24 s3eq2 14232 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑄 → ⟨“𝐴𝑥𝐵”⟩ = ⟨“𝐴𝑄𝐵”⟩)
2524eleq1d 2897 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑄 → (⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
2625riota2 7139 . . . . . . . . . . . . . . 15 ((𝑄 ∈ (Vtx‘𝐺) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄))
2726ad4ant14 750 . . . . . . . . . . . . . 14 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄))
28 simplr2 1212 . . . . . . . . . . . . . . . . 17 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → 𝑃 ∈ (Vtx‘𝐺))
29 s3eq2 14232 . . . . . . . . . . . . . . . . . . 19 (𝑥 = 𝑃 → ⟨“𝐴𝑥𝐵”⟩ = ⟨“𝐴𝑃𝐵”⟩)
3029eleq1d 2897 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑃 → (⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
3130riota2 7139 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ (Vtx‘𝐺) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑃))
3228, 31sylan 582 . . . . . . . . . . . . . . . 16 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑃))
33 eqtr2 2842 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄 ∧ (𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑃) → 𝑄 = 𝑃)
3433expcom 416 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑃 → ((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄𝑄 = 𝑃))
3532, 34syl6bi 255 . . . . . . . . . . . . . . 15 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄𝑄 = 𝑃)))
3635com23 86 . . . . . . . . . . . . . 14 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) = 𝑄 → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
3727, 36sylbid 242 . . . . . . . . . . . . 13 ((((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) ∧ ∃!𝑥 ∈ (Vtx‘𝐺)⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
3823, 37mpdan 685 . . . . . . . . . . . 12 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → (⟨“𝐴𝑄𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
3917, 38sylbid 242 . . . . . . . . . . 11 (((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) ∧ (𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌))) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
4039expimpd 456 . . . . . . . . . 10 ((𝑄 ∈ (Vtx‘𝐺) ∧ (𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺))) → (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
4140ex 415 . . . . . . . . 9 (𝑄 ∈ (Vtx‘𝐺) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
4241com23 86 . . . . . . . 8 (𝑄 ∈ (Vtx‘𝐺) → (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
43423ad2ant2 1130 . . . . . . 7 ((𝐵 ∈ (Vtx‘𝐺) ∧ 𝑄 ∈ (Vtx‘𝐺) ∧ 𝐴 ∈ (Vtx‘𝐺)) → (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
447, 43mpcom 38 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃)))
4544ex 415 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → 𝑄 = 𝑃))))
4645com24 95 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → (⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → 𝑄 = 𝑃))))
4746imp 409 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝐴 ∈ (Vtx‘𝐺) ∧ 𝑃 ∈ (Vtx‘𝐺) ∧ 𝐵 ∈ (Vtx‘𝐺)) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → 𝑄 = 𝑃)))
484, 47mpd 15 . 2 (((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) ∧ ⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴) → 𝑄 = 𝑃))
4948expimpd 456 1 ((𝐺 ∈ FriendGraph ∧ 𝐴𝐵 ∧ (𝑃𝑋𝑄𝑌)) → ((⟨“𝐴𝑃𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐵𝑄𝐴”⟩ ∈ (𝐵(2 WWalksNOn 𝐺)𝐴)) → 𝑄 = 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  ∃!wreu 3140  cfv 6355  crio 7113  (class class class)co 7156  2c2 11693  ⟨“cs3 14204  Vtxcvtx 26781  UMGraphcumgr 26866  USGraphcusgr 26934   WWalksNOn cwwlksnon 27605   FriendGraph cfrgr 28037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-ac2 9885  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-ac 9542  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950  df-s2 14210  df-s3 14211  df-edg 26833  df-uhgr 26843  df-upgr 26867  df-umgr 26868  df-usgr 26936  df-wlks 27381  df-wwlks 27608  df-wwlksn 27609  df-wwlksnon 27610  df-frgr 28038
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator