MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmipval Structured version   Visualization version   GIF version

Theorem frlmipval 20923
Description: The inner product of a free module. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
frlmphl.y 𝑌 = (𝑅 freeLMod 𝐼)
frlmphl.b 𝐵 = (Base‘𝑅)
frlmphl.t · = (.r𝑅)
frlmphl.v 𝑉 = (Base‘𝑌)
frlmphl.j , = (·𝑖𝑌)
Assertion
Ref Expression
frlmipval (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝐹 , 𝐺) = (𝑅 Σg (𝐹f · 𝐺)))

Proof of Theorem frlmipval
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmphl.y . . . . . . 7 𝑌 = (𝑅 freeLMod 𝐼)
2 frlmphl.b . . . . . . 7 𝐵 = (Base‘𝑅)
3 frlmphl.v . . . . . . 7 𝑉 = (Base‘𝑌)
41, 2, 3frlmbasmap 20903 . . . . . 6 ((𝐼𝑊𝐹𝑉) → 𝐹 ∈ (𝐵m 𝐼))
54ad2ant2r 745 . . . . 5 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → 𝐹 ∈ (𝐵m 𝐼))
6 elmapi 8428 . . . . 5 (𝐹 ∈ (𝐵m 𝐼) → 𝐹:𝐼𝐵)
7 ffn 6514 . . . . 5 (𝐹:𝐼𝐵𝐹 Fn 𝐼)
85, 6, 73syl 18 . . . 4 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → 𝐹 Fn 𝐼)
91, 2, 3frlmbasmap 20903 . . . . . 6 ((𝐼𝑊𝐺𝑉) → 𝐺 ∈ (𝐵m 𝐼))
109ad2ant2rl 747 . . . . 5 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → 𝐺 ∈ (𝐵m 𝐼))
11 elmapi 8428 . . . . 5 (𝐺 ∈ (𝐵m 𝐼) → 𝐺:𝐼𝐵)
12 ffn 6514 . . . . 5 (𝐺:𝐼𝐵𝐺 Fn 𝐼)
1310, 11, 123syl 18 . . . 4 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → 𝐺 Fn 𝐼)
14 simpll 765 . . . 4 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → 𝐼𝑊)
15 inidm 4195 . . . 4 (𝐼𝐼) = 𝐼
16 eqidd 2822 . . . 4 ((((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
17 eqidd 2822 . . . 4 ((((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
188, 13, 14, 14, 15, 16, 17offval 7416 . . 3 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝐹f · 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥))))
1918oveq2d 7172 . 2 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝑅 Σg (𝐹f · 𝐺)) = (𝑅 Σg (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥)))))
20 ovexd 7191 . . 3 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝑅 Σg (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥)))) ∈ V)
21 fveq1 6669 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
2221oveq1d 7171 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑥) · (𝑔𝑥)) = ((𝐹𝑥) · (𝑔𝑥)))
2322mpteq2dv 5162 . . . . 5 (𝑓 = 𝐹 → (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥) · (𝑔𝑥))))
2423oveq2d 7172 . . . 4 (𝑓 = 𝐹 → (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝐹𝑥) · (𝑔𝑥)))))
25 fveq1 6669 . . . . . . 7 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
2625oveq2d 7172 . . . . . 6 (𝑔 = 𝐺 → ((𝐹𝑥) · (𝑔𝑥)) = ((𝐹𝑥) · (𝐺𝑥)))
2726mpteq2dv 5162 . . . . 5 (𝑔 = 𝐺 → (𝑥𝐼 ↦ ((𝐹𝑥) · (𝑔𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥))))
2827oveq2d 7172 . . . 4 (𝑔 = 𝐺 → (𝑅 Σg (𝑥𝐼 ↦ ((𝐹𝑥) · (𝑔𝑥)))) = (𝑅 Σg (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥)))))
29 eqid 2821 . . . 4 (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))
3024, 28, 29ovmpog 7309 . . 3 ((𝐹 ∈ (𝐵m 𝐼) ∧ 𝐺 ∈ (𝐵m 𝐼) ∧ (𝑅 Σg (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥)))) ∈ V) → (𝐹(𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))𝐺) = (𝑅 Σg (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥)))))
315, 10, 20, 30syl3anc 1367 . 2 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝐹(𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))𝐺) = (𝑅 Σg (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥)))))
32 frlmphl.t . . . . . 6 · = (.r𝑅)
331, 2, 32frlmip 20922 . . . . 5 ((𝐼𝑊𝑅𝑋) → (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝑌))
3433adantr 483 . . . 4 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = (·𝑖𝑌))
35 frlmphl.j . . . 4 , = (·𝑖𝑌)
3634, 35syl6eqr 2874 . . 3 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥))))) = , )
3736oveqd 7173 . 2 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝐹(𝑓 ∈ (𝐵m 𝐼), 𝑔 ∈ (𝐵m 𝐼) ↦ (𝑅 Σg (𝑥𝐼 ↦ ((𝑓𝑥) · (𝑔𝑥)))))𝐺) = (𝐹 , 𝐺))
3819, 31, 373eqtr2rd 2863 1 (((𝐼𝑊𝑅𝑋) ∧ (𝐹𝑉𝐺𝑉)) → (𝐹 , 𝐺) = (𝑅 Σg (𝐹f · 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3494  cmpt 5146   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  cmpo 7158  f cof 7407  m cmap 8406  Basecbs 16483  .rcmulr 16566  ·𝑖cip 16570   Σg cgsu 16714   freeLMod cfrlm 20890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-prds 16721  df-pws 16723  df-sra 19944  df-rgmod 19945  df-dsmm 20876  df-frlm 20891
This theorem is referenced by:  frlmphl  20925  rrxcph  23995
  Copyright terms: Public domain W3C validator