MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiublem Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiublem 12519
Description: Lemma for fsuppmapnn0fiub 12520 and fsuppmapnn0fiubex 12522. (Contributed by AV, 2-Oct-2019.)
Hypotheses
Ref Expression
fsuppmapnn0fiub.u 𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)
fsuppmapnn0fiub.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
fsuppmapnn0fiublem ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → 𝑆 ∈ ℕ0))
Distinct variable groups:   𝑓,𝑀   𝑅,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑍
Allowed substitution hint:   𝑆(𝑓)

Proof of Theorem fsuppmapnn0fiublem
StepHypRef Expression
1 fsuppmapnn0fiub.u . . . 4 𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)
2 nfv 1796 . . . . . . 7 𝑓(𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)
3 nfra1 2829 . . . . . . . 8 𝑓𝑓𝑀 𝑓 finSupp 𝑍
4 nfv 1796 . . . . . . . 8 𝑓 𝑈 ≠ ∅
53, 4nfan 2059 . . . . . . 7 𝑓(∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)
62, 5nfan 2059 . . . . . 6 𝑓((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅))
7 suppssdm 7070 . . . . . . . 8 (𝑓 supp 𝑍) ⊆ dom 𝑓
8 ssel2 3467 . . . . . . . . . . . . 13 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑓𝑀) → 𝑓 ∈ (𝑅𝑚0))
9 elmapfn 7642 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅𝑚0) → 𝑓 Fn ℕ0)
10 fndm 5789 . . . . . . . . . . . . . 14 (𝑓 Fn ℕ0 → dom 𝑓 = ℕ0)
11 eqimss 3524 . . . . . . . . . . . . . 14 (dom 𝑓 = ℕ0 → dom 𝑓 ⊆ ℕ0)
1210, 11syl 17 . . . . . . . . . . . . 13 (𝑓 Fn ℕ0 → dom 𝑓 ⊆ ℕ0)
138, 9, 123syl 18 . . . . . . . . . . . 12 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℕ0)
1413ex 448 . . . . . . . . . . 11 (𝑀 ⊆ (𝑅𝑚0) → (𝑓𝑀 → dom 𝑓 ⊆ ℕ0))
15143ad2ant1 1074 . . . . . . . . . 10 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (𝑓𝑀 → dom 𝑓 ⊆ ℕ0))
1615adantr 479 . . . . . . . . 9 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → dom 𝑓 ⊆ ℕ0))
1716imp 443 . . . . . . . 8 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℕ0)
187, 17syl5ss 3483 . . . . . . 7 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ ℕ0)
1918ex 448 . . . . . 6 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → (𝑓 supp 𝑍) ⊆ ℕ0))
206, 19ralrimi 2844 . . . . 5 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℕ0)
21 iunss 4395 . . . . 5 ( 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℕ0 ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℕ0)
2220, 21sylibr 222 . . . 4 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℕ0)
231, 22syl5eqss 3516 . . 3 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑈 ⊆ ℕ0)
24 ltso 9868 . . . . 5 < Or ℝ
2524a1i 11 . . . 4 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → < Or ℝ)
26 simp2 1054 . . . . . 6 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → 𝑀 ∈ Fin)
27 id 22 . . . . . . . . 9 (𝑓 finSupp 𝑍𝑓 finSupp 𝑍)
2827fsuppimpd 8041 . . . . . . . 8 (𝑓 finSupp 𝑍 → (𝑓 supp 𝑍) ∈ Fin)
2928ralimi 2840 . . . . . . 7 (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
3029adantr 479 . . . . . 6 ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
31 iunfi 8013 . . . . . 6 ((𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin) → 𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
3226, 30, 31syl2an 492 . . . . 5 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
331, 32syl5eqel 2596 . . . 4 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑈 ∈ Fin)
34 simprr 791 . . . 4 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑈 ≠ ∅)
358, 9, 103syl 18 . . . . . . . . . . . . 13 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑓𝑀) → dom 𝑓 = ℕ0)
3635ex 448 . . . . . . . . . . . 12 (𝑀 ⊆ (𝑅𝑚0) → (𝑓𝑀 → dom 𝑓 = ℕ0))
37363ad2ant1 1074 . . . . . . . . . . 11 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (𝑓𝑀 → dom 𝑓 = ℕ0))
3837adantr 479 . . . . . . . . . 10 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → dom 𝑓 = ℕ0))
3938imp 443 . . . . . . . . 9 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 = ℕ0)
40 nn0ssre 11051 . . . . . . . . 9 0 ⊆ ℝ
4139, 40syl6eqss 3522 . . . . . . . 8 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℝ)
427, 41syl5ss 3483 . . . . . . 7 ((((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ ℝ)
4342ex 448 . . . . . 6 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → (𝑓 supp 𝑍) ⊆ ℝ))
446, 43ralrimi 2844 . . . . 5 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
451sseq1i 3496 . . . . . 6 (𝑈 ⊆ ℝ ↔ 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
46 iunss 4395 . . . . . 6 ( 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
4745, 46bitri 262 . . . . 5 (𝑈 ⊆ ℝ ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
4844, 47sylibr 222 . . . 4 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑈 ⊆ ℝ)
49 fsuppmapnn0fiub.s . . . . 5 𝑆 = sup(𝑈, ℝ, < )
50 fisupcl 8134 . . . . 5 (( < Or ℝ ∧ (𝑈 ∈ Fin ∧ 𝑈 ≠ ∅ ∧ 𝑈 ⊆ ℝ)) → sup(𝑈, ℝ, < ) ∈ 𝑈)
5149, 50syl5eqel 2596 . . . 4 (( < Or ℝ ∧ (𝑈 ∈ Fin ∧ 𝑈 ≠ ∅ ∧ 𝑈 ⊆ ℝ)) → 𝑆𝑈)
5225, 33, 34, 48, 51syl13anc 1319 . . 3 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑆𝑈)
5323, 52sseldd 3473 . 2 (((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑆 ∈ ℕ0)
5453ex 448 1 ((𝑀 ⊆ (𝑅𝑚0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → 𝑆 ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1938  wne 2684  wral 2800  wss 3444  c0 3777   ciun 4353   class class class wbr 4481   Or wor 4852  dom cdm 4932   Fn wfn 5684  (class class class)co 6426   supp csupp 7057  𝑚 cmap 7620  Fincfn 7717   finSupp cfsupp 8034  supcsup 8105  cr 9690   < clt 9829  0cn0 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6723  ax-resscn 9748  ax-1cn 9749  ax-icn 9750  ax-addcl 9751  ax-addrcl 9752  ax-mulcl 9753  ax-mulrcl 9754  ax-i2m1 9759  ax-1ne0 9760  ax-rnegex 9762  ax-rrecex 9763  ax-cnre 9764  ax-pre-lttri 9765  ax-pre-lttrn 9766
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-reu 2807  df-rmo 2808  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-pss 3460  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-uni 4271  df-int 4309  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-tr 4579  df-eprel 4843  df-id 4847  df-po 4853  df-so 4854  df-fr 4891  df-we 4893  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-pred 5487  df-ord 5533  df-on 5534  df-lim 5535  df-suc 5536  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-riota 6388  df-ov 6429  df-oprab 6430  df-mpt2 6431  df-om 6834  df-1st 6934  df-2nd 6935  df-supp 7058  df-wrecs 7169  df-recs 7231  df-rdg 7269  df-1o 7323  df-oadd 7327  df-er 7505  df-map 7622  df-en 7718  df-dom 7719  df-sdom 7720  df-fin 7721  df-fsupp 8035  df-sup 8107  df-pnf 9831  df-mnf 9832  df-ltxr 9834  df-nn 10776  df-n0 11048
This theorem is referenced by:  fsuppmapnn0fiub  12520  fsuppmapnn0fiubOLD  12521  fsuppmapnn0fiubex  12522
  Copyright terms: Public domain W3C validator