MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem9 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem9 16709
Description: Lemma 9 for funcestrcsetc 16710. (Contributed by AV, 23-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))))
Assertion
Ref Expression
funcestrcsetclem9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem funcestrcsetclem9
StepHypRef Expression
1 funcestrcsetc.e . . . . . 6 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.u . . . . . . 7 (𝜑𝑈 ∈ WUni)
32adantr 481 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑈 ∈ WUni)
4 eqid 2621 . . . . . 6 (Hom ‘𝐸) = (Hom ‘𝐸)
51, 2estrcbas 16686 . . . . . . . . . . 11 (𝜑𝑈 = (Base‘𝐸))
6 funcestrcsetc.b . . . . . . . . . . 11 𝐵 = (Base‘𝐸)
75, 6syl6reqr 2674 . . . . . . . . . 10 (𝜑𝐵 = 𝑈)
87eleq2d 2684 . . . . . . . . 9 (𝜑 → (𝑋𝐵𝑋𝑈))
98biimpcd 239 . . . . . . . 8 (𝑋𝐵 → (𝜑𝑋𝑈))
1093ad2ant1 1080 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝜑𝑋𝑈))
1110impcom 446 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝑈)
127eleq2d 2684 . . . . . . . . 9 (𝜑 → (𝑌𝐵𝑌𝑈))
1312biimpcd 239 . . . . . . . 8 (𝑌𝐵 → (𝜑𝑌𝑈))
14133ad2ant2 1081 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝜑𝑌𝑈))
1514impcom 446 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝑈)
16 eqid 2621 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
17 eqid 2621 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
181, 3, 4, 11, 15, 16, 17estrchom 16688 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋(Hom ‘𝐸)𝑌) = ((Base‘𝑌) ↑𝑚 (Base‘𝑋)))
1918eleq2d 2684 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ↔ 𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))))
207eleq2d 2684 . . . . . . . . 9 (𝜑 → (𝑍𝐵𝑍𝑈))
2120biimpcd 239 . . . . . . . 8 (𝑍𝐵 → (𝜑𝑍𝑈))
22213ad2ant3 1082 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝜑𝑍𝑈))
2322impcom 446 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝑈)
24 eqid 2621 . . . . . 6 (Base‘𝑍) = (Base‘𝑍)
251, 3, 4, 15, 23, 17, 24estrchom 16688 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌(Hom ‘𝐸)𝑍) = ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))
2625eleq2d 2684 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍) ↔ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌))))
2719, 26anbi12d 746 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍)) ↔ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))))
28 elmapi 7823 . . . . . . . . . 10 (𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍))
29 elmapi 7823 . . . . . . . . . 10 (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌))
30 fco 6015 . . . . . . . . . 10 ((𝐾:(Base‘𝑌)⟶(Base‘𝑍) ∧ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)) → (𝐾𝐻):(Base‘𝑋)⟶(Base‘𝑍))
3128, 29, 30syl2an 494 . . . . . . . . 9 ((𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)) ∧ 𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))) → (𝐾𝐻):(Base‘𝑋)⟶(Base‘𝑍))
32 fvex 6158 . . . . . . . . . 10 (Base‘𝑍) ∈ V
33 fvex 6158 . . . . . . . . . 10 (Base‘𝑋) ∈ V
3432, 33elmap 7830 . . . . . . . . 9 ((𝐾𝐻) ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑋)) ↔ (𝐾𝐻):(Base‘𝑋)⟶(Base‘𝑍))
3531, 34sylibr 224 . . . . . . . 8 ((𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)) ∧ 𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))) → (𝐾𝐻) ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑋)))
3635ancoms 469 . . . . . . 7 ((𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌))) → (𝐾𝐻) ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑋)))
3736adantl 482 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝐾𝐻) ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑋)))
38 fvresi 6393 . . . . . 6 ((𝐾𝐻) ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑋)) → (( I ↾ ((Base‘𝑍) ↑𝑚 (Base‘𝑋)))‘(𝐾𝐻)) = (𝐾𝐻))
3937, 38syl 17 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (( I ↾ ((Base‘𝑍) ↑𝑚 (Base‘𝑋)))‘(𝐾𝐻)) = (𝐾𝐻))
40 funcestrcsetc.s . . . . . . . . 9 𝑆 = (SetCat‘𝑈)
41 funcestrcsetc.c . . . . . . . . 9 𝐶 = (Base‘𝑆)
42 funcestrcsetc.f . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
43 funcestrcsetc.g . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑𝑚 (Base‘𝑥)))))
441, 40, 6, 41, 2, 42, 43, 16, 24funcestrcsetclem5 16705 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑍𝐵)) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑𝑚 (Base‘𝑋))))
45443adantr2 1219 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑𝑚 (Base‘𝑋))))
4645adantr 481 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑𝑚 (Base‘𝑋))))
473adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝑈 ∈ WUni)
48 eqid 2621 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
4911adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝑋𝑈)
5015adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝑌𝑈)
5123adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝑍𝑈)
5229ad2antrl 763 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌))
5328ad2antll 764 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍))
541, 47, 48, 49, 50, 51, 16, 17, 24, 52, 53estrcco 16691 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻) = (𝐾𝐻))
5546, 54fveq12d 6154 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (( I ↾ ((Base‘𝑍) ↑𝑚 (Base‘𝑋)))‘(𝐾𝐻)))
56 eqid 2621 . . . . . . 7 (comp‘𝑆) = (comp‘𝑆)
571, 40, 6, 41, 2, 42funcestrcsetclem2 16702 . . . . . . . . 9 ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
58573ad2antr1 1224 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑋) ∈ 𝑈)
5958adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝐹𝑋) ∈ 𝑈)
601, 40, 6, 41, 2, 42funcestrcsetclem2 16702 . . . . . . . . 9 ((𝜑𝑌𝐵) → (𝐹𝑌) ∈ 𝑈)
61603ad2antr2 1225 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑌) ∈ 𝑈)
6261adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝐹𝑌) ∈ 𝑈)
631, 40, 6, 41, 2, 42funcestrcsetclem2 16702 . . . . . . . . 9 ((𝜑𝑍𝐵) → (𝐹𝑍) ∈ 𝑈)
64633ad2antr3 1226 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑍) ∈ 𝑈)
6564adantr 481 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝐹𝑍) ∈ 𝑈)
661, 40, 6, 41, 2, 42funcestrcsetclem1 16701 . . . . . . . . . . . 12 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
67663ad2antr1 1224 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑋) = (Base‘𝑋))
681, 40, 6, 41, 2, 42funcestrcsetclem1 16701 . . . . . . . . . . . 12 ((𝜑𝑌𝐵) → (𝐹𝑌) = (Base‘𝑌))
69683ad2antr2 1225 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑌) = (Base‘𝑌))
7067, 69feq23d 5997 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐻:(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)))
7170adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝐻:(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)))
7252, 71mpbird 247 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝐻:(𝐹𝑋)⟶(𝐹𝑌))
73 simpll 789 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝜑)
74 3simpa 1056 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋𝐵𝑌𝐵))
7574ad2antlr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝑋𝐵𝑌𝐵))
76 simprl 793 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)))
771, 40, 6, 41, 2, 42, 43, 16, 17funcestrcsetclem6 16706 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
7873, 75, 76, 77syl3anc 1323 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
7978feq1d 5987 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (((𝑋𝐺𝑌)‘𝐻):(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(𝐹𝑋)⟶(𝐹𝑌)))
8072, 79mpbird 247 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → ((𝑋𝐺𝑌)‘𝐻):(𝐹𝑋)⟶(𝐹𝑌))
811, 40, 6, 41, 2, 42funcestrcsetclem1 16701 . . . . . . . . . . . 12 ((𝜑𝑍𝐵) → (𝐹𝑍) = (Base‘𝑍))
82813ad2antr3 1226 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑍) = (Base‘𝑍))
8369, 82feq23d 5997 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐾:(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍)))
8483adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝐾:(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍)))
8553, 84mpbird 247 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝐾:(𝐹𝑌)⟶(𝐹𝑍))
86 3simpc 1058 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑌𝐵𝑍𝐵))
8786ad2antlr 762 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (𝑌𝐵𝑍𝐵))
88 simprr 795 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))
891, 40, 6, 41, 2, 42, 43, 17, 24funcestrcsetclem6 16706 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
9073, 87, 88, 89syl3anc 1323 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
9190feq1d 5987 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾):(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(𝐹𝑌)⟶(𝐹𝑍)))
9285, 91mpbird 247 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → ((𝑌𝐺𝑍)‘𝐾):(𝐹𝑌)⟶(𝐹𝑍))
9340, 47, 56, 59, 62, 65, 80, 92setcco 16654 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)))
9490, 78coeq12d 5246 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
9593, 94eqtrd 2655 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
9639, 55, 953eqtr4d 2665 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌)))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
9796ex 450 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ ((Base‘𝑌) ↑𝑚 (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑𝑚 (Base‘𝑌))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
9827, 97sylbid 230 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
99983impia 1258 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  cop 4154  cmpt 4673   I cid 4984  cres 5076  ccom 5078  wf 5843  cfv 5847  (class class class)co 6604  cmpt2 6606  𝑚 cmap 7802  WUnicwun 9466  Basecbs 15781  Hom chom 15873  compcco 15874  SetCatcsetc 16646  ExtStrCatcestrc 16683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-wun 9468  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-hom 15887  df-cco 15888  df-setc 16647  df-estrc 16684
This theorem is referenced by:  funcestrcsetc  16710
  Copyright terms: Public domain W3C validator