MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funcestrcsetclem9 Structured version   Visualization version   GIF version

Theorem funcestrcsetclem9 17381
Description: Lemma 9 for funcestrcsetc 17382. (Contributed by AV, 23-Mar-2020.)
Hypotheses
Ref Expression
funcestrcsetc.e 𝐸 = (ExtStrCat‘𝑈)
funcestrcsetc.s 𝑆 = (SetCat‘𝑈)
funcestrcsetc.b 𝐵 = (Base‘𝐸)
funcestrcsetc.c 𝐶 = (Base‘𝑆)
funcestrcsetc.u (𝜑𝑈 ∈ WUni)
funcestrcsetc.f (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
funcestrcsetc.g (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
Assertion
Ref Expression
funcestrcsetclem9 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑋   𝜑,𝑥   𝑥,𝐶   𝑦,𝐵,𝑥   𝑦,𝑋   𝜑,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦
Allowed substitution hints:   𝐶(𝑦)   𝑆(𝑥,𝑦)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem funcestrcsetclem9
StepHypRef Expression
1 funcestrcsetc.e . . . . . 6 𝐸 = (ExtStrCat‘𝑈)
2 funcestrcsetc.u . . . . . . 7 (𝜑𝑈 ∈ WUni)
32adantr 483 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑈 ∈ WUni)
4 eqid 2821 . . . . . 6 (Hom ‘𝐸) = (Hom ‘𝐸)
51, 2estrcbas 17358 . . . . . . . . . . 11 (𝜑𝑈 = (Base‘𝐸))
6 funcestrcsetc.b . . . . . . . . . . 11 𝐵 = (Base‘𝐸)
75, 6syl6reqr 2875 . . . . . . . . . 10 (𝜑𝐵 = 𝑈)
87eleq2d 2898 . . . . . . . . 9 (𝜑 → (𝑋𝐵𝑋𝑈))
98biimpcd 251 . . . . . . . 8 (𝑋𝐵 → (𝜑𝑋𝑈))
1093ad2ant1 1129 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝜑𝑋𝑈))
1110impcom 410 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑋𝑈)
127eleq2d 2898 . . . . . . . . 9 (𝜑 → (𝑌𝐵𝑌𝑈))
1312biimpcd 251 . . . . . . . 8 (𝑌𝐵 → (𝜑𝑌𝑈))
14133ad2ant2 1130 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝜑𝑌𝑈))
1514impcom 410 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑌𝑈)
16 eqid 2821 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
17 eqid 2821 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
181, 3, 4, 11, 15, 16, 17estrchom 17360 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋(Hom ‘𝐸)𝑌) = ((Base‘𝑌) ↑m (Base‘𝑋)))
1918eleq2d 2898 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ↔ 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))))
207eleq2d 2898 . . . . . . . . 9 (𝜑 → (𝑍𝐵𝑍𝑈))
2120biimpcd 251 . . . . . . . 8 (𝑍𝐵 → (𝜑𝑍𝑈))
22213ad2ant3 1131 . . . . . . 7 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝜑𝑍𝑈))
2322impcom 410 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → 𝑍𝑈)
24 eqid 2821 . . . . . 6 (Base‘𝑍) = (Base‘𝑍)
251, 3, 4, 15, 23, 17, 24estrchom 17360 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑌(Hom ‘𝐸)𝑍) = ((Base‘𝑍) ↑m (Base‘𝑌)))
2625eleq2d 2898 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍) ↔ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌))))
2719, 26anbi12d 632 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍)) ↔ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))))
28 elmapi 8414 . . . . . . . . . 10 (𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍))
29 elmapi 8414 . . . . . . . . . 10 (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌))
30 fco 6517 . . . . . . . . . 10 ((𝐾:(Base‘𝑌)⟶(Base‘𝑍) ∧ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)) → (𝐾𝐻):(Base‘𝑋)⟶(Base‘𝑍))
3128, 29, 30syl2an 597 . . . . . . . . 9 ((𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) ∧ 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))) → (𝐾𝐻):(Base‘𝑋)⟶(Base‘𝑍))
32 fvex 6669 . . . . . . . . . 10 (Base‘𝑍) ∈ V
33 fvex 6669 . . . . . . . . . 10 (Base‘𝑋) ∈ V
3432, 33elmap 8421 . . . . . . . . 9 ((𝐾𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)) ↔ (𝐾𝐻):(Base‘𝑋)⟶(Base‘𝑍))
3531, 34sylibr 236 . . . . . . . 8 ((𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)) ∧ 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))) → (𝐾𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)))
3635ancoms 461 . . . . . . 7 ((𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌))) → (𝐾𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)))
3736adantl 484 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐾𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)))
38 fvresi 6921 . . . . . 6 ((𝐾𝐻) ∈ ((Base‘𝑍) ↑m (Base‘𝑋)) → (( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋)))‘(𝐾𝐻)) = (𝐾𝐻))
3937, 38syl 17 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋)))‘(𝐾𝐻)) = (𝐾𝐻))
40 funcestrcsetc.s . . . . . . . . 9 𝑆 = (SetCat‘𝑈)
41 funcestrcsetc.c . . . . . . . . 9 𝐶 = (Base‘𝑆)
42 funcestrcsetc.f . . . . . . . . 9 (𝜑𝐹 = (𝑥𝐵 ↦ (Base‘𝑥)))
43 funcestrcsetc.g . . . . . . . . 9 (𝜑𝐺 = (𝑥𝐵, 𝑦𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥)))))
441, 40, 6, 41, 2, 42, 43, 16, 24funcestrcsetclem5 17377 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑍𝐵)) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋))))
45443adantr2 1166 . . . . . . 7 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋))))
4645adantr 483 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝑋𝐺𝑍) = ( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋))))
473adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝑈 ∈ WUni)
48 eqid 2821 . . . . . . 7 (comp‘𝐸) = (comp‘𝐸)
4911adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝑋𝑈)
5015adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝑌𝑈)
5123adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝑍𝑈)
5229ad2antrl 726 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐻:(Base‘𝑋)⟶(Base‘𝑌))
5328ad2antll 727 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐾:(Base‘𝑌)⟶(Base‘𝑍))
541, 47, 48, 49, 50, 51, 16, 17, 24, 52, 53estrcco 17363 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻) = (𝐾𝐻))
5546, 54fveq12d 6663 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (( I ↾ ((Base‘𝑍) ↑m (Base‘𝑋)))‘(𝐾𝐻)))
56 eqid 2821 . . . . . . 7 (comp‘𝑆) = (comp‘𝑆)
571, 40, 6, 41, 2, 42funcestrcsetclem2 17374 . . . . . . . . 9 ((𝜑𝑋𝐵) → (𝐹𝑋) ∈ 𝑈)
58573ad2antr1 1184 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑋) ∈ 𝑈)
5958adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐹𝑋) ∈ 𝑈)
601, 40, 6, 41, 2, 42funcestrcsetclem2 17374 . . . . . . . . 9 ((𝜑𝑌𝐵) → (𝐹𝑌) ∈ 𝑈)
61603ad2antr2 1185 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑌) ∈ 𝑈)
6261adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐹𝑌) ∈ 𝑈)
631, 40, 6, 41, 2, 42funcestrcsetclem2 17374 . . . . . . . . 9 ((𝜑𝑍𝐵) → (𝐹𝑍) ∈ 𝑈)
64633ad2antr3 1186 . . . . . . . 8 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑍) ∈ 𝑈)
6564adantr 483 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐹𝑍) ∈ 𝑈)
661, 40, 6, 41, 2, 42funcestrcsetclem1 17373 . . . . . . . . . . . 12 ((𝜑𝑋𝐵) → (𝐹𝑋) = (Base‘𝑋))
67663ad2antr1 1184 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑋) = (Base‘𝑋))
681, 40, 6, 41, 2, 42funcestrcsetclem1 17373 . . . . . . . . . . . 12 ((𝜑𝑌𝐵) → (𝐹𝑌) = (Base‘𝑌))
69683ad2antr2 1185 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑌) = (Base‘𝑌))
7067, 69feq23d 6495 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐻:(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)))
7170adantr 483 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐻:(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(Base‘𝑋)⟶(Base‘𝑌)))
7252, 71mpbird 259 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐻:(𝐹𝑋)⟶(𝐹𝑌))
73 simpll 765 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝜑)
74 3simpa 1144 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑋𝐵𝑌𝐵))
7574ad2antlr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝑋𝐵𝑌𝐵))
76 simprl 769 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)))
771, 40, 6, 41, 2, 42, 43, 16, 17funcestrcsetclem6 17378 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵) ∧ 𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
7873, 75, 76, 77syl3anc 1367 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻)
7978feq1d 6485 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑋𝐺𝑌)‘𝐻):(𝐹𝑋)⟶(𝐹𝑌) ↔ 𝐻:(𝐹𝑋)⟶(𝐹𝑌)))
8072, 79mpbird 259 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑋𝐺𝑌)‘𝐻):(𝐹𝑋)⟶(𝐹𝑌))
811, 40, 6, 41, 2, 42funcestrcsetclem1 17373 . . . . . . . . . . . 12 ((𝜑𝑍𝐵) → (𝐹𝑍) = (Base‘𝑍))
82813ad2antr3 1186 . . . . . . . . . . 11 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐹𝑍) = (Base‘𝑍))
8369, 82feq23d 6495 . . . . . . . . . 10 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝐾:(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍)))
8483adantr 483 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝐾:(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(Base‘𝑌)⟶(Base‘𝑍)))
8553, 84mpbird 259 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐾:(𝐹𝑌)⟶(𝐹𝑍))
86 3simpc 1146 . . . . . . . . . . 11 ((𝑋𝐵𝑌𝐵𝑍𝐵) → (𝑌𝐵𝑍𝐵))
8786ad2antlr 725 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (𝑌𝐵𝑍𝐵))
88 simprr 771 . . . . . . . . . 10 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))
891, 40, 6, 41, 2, 42, 43, 17, 24funcestrcsetclem6 17378 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
9073, 87, 88, 89syl3anc 1367 . . . . . . . . 9 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑌𝐺𝑍)‘𝐾) = 𝐾)
9190feq1d 6485 . . . . . . . 8 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾):(𝐹𝑌)⟶(𝐹𝑍) ↔ 𝐾:(𝐹𝑌)⟶(𝐹𝑍)))
9285, 91mpbird 259 . . . . . . 7 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑌𝐺𝑍)‘𝐾):(𝐹𝑌)⟶(𝐹𝑍))
9340, 47, 56, 59, 62, 65, 80, 92setcco 17326 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)))
9490, 78coeq12d 5721 . . . . . 6 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾) ∘ ((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
9593, 94eqtrd 2856 . . . . 5 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)) = (𝐾𝐻))
9639, 55, 953eqtr4d 2866 . . . 4 (((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) ∧ (𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌)))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
9796ex 415 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ ((Base‘𝑌) ↑m (Base‘𝑋)) ∧ 𝐾 ∈ ((Base‘𝑍) ↑m (Base‘𝑌))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
9827, 97sylbid 242 . 2 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍)) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻))))
99983impia 1113 1 ((𝜑 ∧ (𝑋𝐵𝑌𝐵𝑍𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(⟨𝑋, 𝑌⟩(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝑆)(𝐹𝑍))((𝑋𝐺𝑌)‘𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  cop 4559  cmpt 5132   I cid 5445  cres 5543  ccom 5545  wf 6337  cfv 6341  (class class class)co 7142  cmpo 7144  m cmap 8392  WUnicwun 10108  Basecbs 16466  Hom chom 16559  compcco 16560  SetCatcsetc 17318  ExtStrCatcestrc 17355
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-wun 10110  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-2 11687  df-3 11688  df-4 11689  df-5 11690  df-6 11691  df-7 11692  df-8 11693  df-9 11694  df-n0 11885  df-z 11969  df-dec 12086  df-uz 12231  df-fz 12883  df-struct 16468  df-ndx 16469  df-slot 16470  df-base 16472  df-hom 16572  df-cco 16573  df-setc 17319  df-estrc 17356
This theorem is referenced by:  funcestrcsetc  17382
  Copyright terms: Public domain W3C validator