MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grppncan Structured version   Visualization version   GIF version

Theorem grppncan 17271
Description: Cancellation law for subtraction (pncan 10134 analog). (Contributed by NM, 16-Apr-2014.)
Hypotheses
Ref Expression
grpsubadd.b 𝐵 = (Base‘𝐺)
grpsubadd.p + = (+g𝐺)
grpsubadd.m = (-g𝐺)
Assertion
Ref Expression
grppncan ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) 𝑌) = 𝑋)

Proof of Theorem grppncan
StepHypRef Expression
1 simp1 1053 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝐺 ∈ Grp)
2 simp2 1054 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝑋𝐵)
3 simp3 1055 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → 𝑌𝐵)
4 grpsubadd.b . . . 4 𝐵 = (Base‘𝐺)
5 grpsubadd.p . . . 4 + = (+g𝐺)
6 grpsubadd.m . . . 4 = (-g𝐺)
74, 5, 6grpaddsubass 17270 . . 3 ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑌𝐵)) → ((𝑋 + 𝑌) 𝑌) = (𝑋 + (𝑌 𝑌)))
81, 2, 3, 3, 7syl13anc 1319 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) 𝑌) = (𝑋 + (𝑌 𝑌)))
9 eqid 2605 . . . . 5 (0g𝐺) = (0g𝐺)
104, 9, 6grpsubid 17264 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑌 𝑌) = (0g𝐺))
1110oveq2d 6539 . . 3 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑋 + (𝑌 𝑌)) = (𝑋 + (0g𝐺)))
12113adant2 1072 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (𝑌 𝑌)) = (𝑋 + (0g𝐺)))
134, 5, 9grprid 17218 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + (0g𝐺)) = 𝑋)
14133adant3 1073 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + (0g𝐺)) = 𝑋)
158, 12, 143eqtrd 2643 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → ((𝑋 + 𝑌) 𝑌) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1975  cfv 5786  (class class class)co 6523  Basecbs 15637  +gcplusg 15710  0gc0g 15865  Grpcgrp 17187  -gcsg 17189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-op 4127  df-uni 4363  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-id 4939  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-1st 7032  df-2nd 7033  df-0g 15867  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-grp 17190  df-minusg 17191  df-sbg 17192
This theorem is referenced by:  grpnpcan  17272  grppnpcan2  17274  ssnmz  17401  conjnmz  17459  cntrsubgnsg  17538  sylow2blem3  17802  sylow3lem2  17808  subgdisj1  17869  pgpfac1lem3  18241  lmodvpncan  18681  opnsubg  21659  lfl0  33169
  Copyright terms: Public domain W3C validator