Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  icco1 Structured version   Visualization version   GIF version

Theorem icco1 14221
 Description: Derive eventual boundedness from separate upper and lower eventual bounds. (Contributed by Mario Carneiro, 15-Apr-2016.)
Hypotheses
Ref Expression
icco1.1 (𝜑𝐴 ⊆ ℝ)
icco1.2 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
icco1.3 (𝜑𝐶 ∈ ℝ)
icco1.4 (𝜑𝑀 ∈ ℝ)
icco1.5 (𝜑𝑁 ∈ ℝ)
icco1.6 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝐵 ∈ (𝑀[,]𝑁))
Assertion
Ref Expression
icco1 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem icco1
StepHypRef Expression
1 icco1.1 . . 3 (𝜑𝐴 ⊆ ℝ)
2 icco1.2 . . 3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
3 icco1.3 . . 3 (𝜑𝐶 ∈ ℝ)
4 icco1.5 . . 3 (𝜑𝑁 ∈ ℝ)
5 icco1.6 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝐵 ∈ (𝑀[,]𝑁))
6 icco1.4 . . . . . . 7 (𝜑𝑀 ∈ ℝ)
7 elicc2 12196 . . . . . . 7 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐵 ∈ (𝑀[,]𝑁) ↔ (𝐵 ∈ ℝ ∧ 𝑀𝐵𝐵𝑁)))
86, 4, 7syl2anc 692 . . . . . 6 (𝜑 → (𝐵 ∈ (𝑀[,]𝑁) ↔ (𝐵 ∈ ℝ ∧ 𝑀𝐵𝐵𝑁)))
98adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → (𝐵 ∈ (𝑀[,]𝑁) ↔ (𝐵 ∈ ℝ ∧ 𝑀𝐵𝐵𝑁)))
105, 9mpbid 222 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → (𝐵 ∈ ℝ ∧ 𝑀𝐵𝐵𝑁))
1110simp3d 1073 . . 3 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝐵𝑁)
121, 2, 3, 4, 11ello1d 14204 . 2 (𝜑 → (𝑥𝐴𝐵) ∈ ≤𝑂(1))
132renegcld 10417 . . 3 ((𝜑𝑥𝐴) → -𝐵 ∈ ℝ)
146renegcld 10417 . . 3 (𝜑 → -𝑀 ∈ ℝ)
1510simp2d 1072 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝑀𝐵)
166adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝑀 ∈ ℝ)
172adantrr 752 . . . . 5 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → 𝐵 ∈ ℝ)
1816, 17lenegd 10566 . . . 4 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → (𝑀𝐵 ↔ -𝐵 ≤ -𝑀))
1915, 18mpbid 222 . . 3 ((𝜑 ∧ (𝑥𝐴𝐶𝑥)) → -𝐵 ≤ -𝑀)
201, 13, 3, 14, 19ello1d 14204 . 2 (𝜑 → (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))
212o1lo1 14218 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ((𝑥𝐴𝐵) ∈ ≤𝑂(1) ∧ (𝑥𝐴 ↦ -𝐵) ∈ ≤𝑂(1))))
2212, 20, 21mpbir2and 956 1 (𝜑 → (𝑥𝐴𝐵) ∈ 𝑂(1))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   ∈ wcel 1987   ⊆ wss 3560   class class class wbr 4623   ↦ cmpt 4683  (class class class)co 6615  ℝcr 9895   ≤ cle 10035  -cneg 10227  [,]cicc 12136  𝑂(1)co1 14167  ≤𝑂(1)clo1 14168 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-pm 7820  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-ico 12139  df-icc 12140  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-o1 14171  df-lo1 14172 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator