MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  idsrngd Structured version   Visualization version   GIF version

Theorem idsrngd 19611
Description: A commutative ring is a star ring when the conjugate operation is the identity. (Contributed by Thierry Arnoux, 19-Apr-2019.)
Hypotheses
Ref Expression
idsrngd.k 𝐵 = (Base‘𝑅)
idsrngd.c = (*𝑟𝑅)
idsrngd.r (𝜑𝑅 ∈ CRing)
idsrngd.i ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
Assertion
Ref Expression
idsrngd (𝜑𝑅 ∈ *-Ring)
Distinct variable groups:   𝑥,   𝑥,𝐵   𝑥,𝑅   𝜑,𝑥

Proof of Theorem idsrngd
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idsrngd.k . . 3 𝐵 = (Base‘𝑅)
21a1i 11 . 2 (𝜑𝐵 = (Base‘𝑅))
3 eqidd 2821 . 2 (𝜑 → (+g𝑅) = (+g𝑅))
4 eqidd 2821 . 2 (𝜑 → (.r𝑅) = (.r𝑅))
5 idsrngd.c . . 3 = (*𝑟𝑅)
65a1i 11 . 2 (𝜑 = (*𝑟𝑅))
7 idsrngd.r . . 3 (𝜑𝑅 ∈ CRing)
8 crngring 19286 . . 3 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
97, 8syl 17 . 2 (𝜑𝑅 ∈ Ring)
10 idsrngd.i . . . . . 6 ((𝜑𝑥𝐵) → ( 𝑥) = 𝑥)
1110ralrimiva 3177 . . . . 5 (𝜑 → ∀𝑥𝐵 ( 𝑥) = 𝑥)
1211adantr 483 . . . 4 ((𝜑𝑎𝐵) → ∀𝑥𝐵 ( 𝑥) = 𝑥)
13 simpr 487 . . . . 5 ((𝜑𝑎𝐵) → 𝑎𝐵)
14 simpr 487 . . . . . . 7 (((𝜑𝑎𝐵) ∧ 𝑥 = 𝑎) → 𝑥 = 𝑎)
1514fveq2d 6655 . . . . . 6 (((𝜑𝑎𝐵) ∧ 𝑥 = 𝑎) → ( 𝑥) = ( 𝑎))
1615, 14eqeq12d 2836 . . . . 5 (((𝜑𝑎𝐵) ∧ 𝑥 = 𝑎) → (( 𝑥) = 𝑥 ↔ ( 𝑎) = 𝑎))
1713, 16rspcdv 3602 . . . 4 ((𝜑𝑎𝐵) → (∀𝑥𝐵 ( 𝑥) = 𝑥 → ( 𝑎) = 𝑎))
1812, 17mpd 15 . . 3 ((𝜑𝑎𝐵) → ( 𝑎) = 𝑎)
1918, 13eqeltrd 2911 . 2 ((𝜑𝑎𝐵) → ( 𝑎) ∈ 𝐵)
2011adantr 483 . . . . 5 ((𝜑𝑏𝐵) → ∀𝑥𝐵 ( 𝑥) = 𝑥)
21203adant2 1127 . . . 4 ((𝜑𝑎𝐵𝑏𝐵) → ∀𝑥𝐵 ( 𝑥) = 𝑥)
22 ringgrp 19280 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
239, 22syl 17 . . . . . 6 (𝜑𝑅 ∈ Grp)
24 eqid 2820 . . . . . . 7 (+g𝑅) = (+g𝑅)
251, 24grpcl 18089 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
2623, 25syl3an1 1159 . . . . 5 ((𝜑𝑎𝐵𝑏𝐵) → (𝑎(+g𝑅)𝑏) ∈ 𝐵)
27 simpr 487 . . . . . . 7 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(+g𝑅)𝑏)) → 𝑥 = (𝑎(+g𝑅)𝑏))
2827fveq2d 6655 . . . . . 6 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(+g𝑅)𝑏)) → ( 𝑥) = ( ‘(𝑎(+g𝑅)𝑏)))
2928, 27eqeq12d 2836 . . . . 5 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(+g𝑅)𝑏)) → (( 𝑥) = 𝑥 ↔ ( ‘(𝑎(+g𝑅)𝑏)) = (𝑎(+g𝑅)𝑏)))
3026, 29rspcdv 3602 . . . 4 ((𝜑𝑎𝐵𝑏𝐵) → (∀𝑥𝐵 ( 𝑥) = 𝑥 → ( ‘(𝑎(+g𝑅)𝑏)) = (𝑎(+g𝑅)𝑏)))
3121, 30mpd 15 . . 3 ((𝜑𝑎𝐵𝑏𝐵) → ( ‘(𝑎(+g𝑅)𝑏)) = (𝑎(+g𝑅)𝑏))
32183adant3 1128 . . . 4 ((𝜑𝑎𝐵𝑏𝐵) → ( 𝑎) = 𝑎)
33 simpr 487 . . . . . . 7 ((𝜑𝑏𝐵) → 𝑏𝐵)
34 simpr 487 . . . . . . . . 9 (((𝜑𝑏𝐵) ∧ 𝑥 = 𝑏) → 𝑥 = 𝑏)
3534fveq2d 6655 . . . . . . . 8 (((𝜑𝑏𝐵) ∧ 𝑥 = 𝑏) → ( 𝑥) = ( 𝑏))
3635, 34eqeq12d 2836 . . . . . . 7 (((𝜑𝑏𝐵) ∧ 𝑥 = 𝑏) → (( 𝑥) = 𝑥 ↔ ( 𝑏) = 𝑏))
3733, 36rspcdv 3602 . . . . . 6 ((𝜑𝑏𝐵) → (∀𝑥𝐵 ( 𝑥) = 𝑥 → ( 𝑏) = 𝑏))
3820, 37mpd 15 . . . . 5 ((𝜑𝑏𝐵) → ( 𝑏) = 𝑏)
39383adant2 1127 . . . 4 ((𝜑𝑎𝐵𝑏𝐵) → ( 𝑏) = 𝑏)
4032, 39oveq12d 7155 . . 3 ((𝜑𝑎𝐵𝑏𝐵) → (( 𝑎)(+g𝑅)( 𝑏)) = (𝑎(+g𝑅)𝑏))
4131, 40eqtr4d 2858 . 2 ((𝜑𝑎𝐵𝑏𝐵) → ( ‘(𝑎(+g𝑅)𝑏)) = (( 𝑎)(+g𝑅)( 𝑏)))
42 eqid 2820 . . . . 5 (.r𝑅) = (.r𝑅)
431, 42crngcom 19290 . . . 4 ((𝑅 ∈ CRing ∧ 𝑎𝐵𝑏𝐵) → (𝑎(.r𝑅)𝑏) = (𝑏(.r𝑅)𝑎))
447, 43syl3an1 1159 . . 3 ((𝜑𝑎𝐵𝑏𝐵) → (𝑎(.r𝑅)𝑏) = (𝑏(.r𝑅)𝑎))
451, 42ringcl 19289 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑎𝐵𝑏𝐵) → (𝑎(.r𝑅)𝑏) ∈ 𝐵)
469, 45syl3an1 1159 . . . . 5 ((𝜑𝑎𝐵𝑏𝐵) → (𝑎(.r𝑅)𝑏) ∈ 𝐵)
47 simpr 487 . . . . . . 7 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(.r𝑅)𝑏)) → 𝑥 = (𝑎(.r𝑅)𝑏))
4847fveq2d 6655 . . . . . 6 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(.r𝑅)𝑏)) → ( 𝑥) = ( ‘(𝑎(.r𝑅)𝑏)))
4948, 47eqeq12d 2836 . . . . 5 (((𝜑𝑎𝐵𝑏𝐵) ∧ 𝑥 = (𝑎(.r𝑅)𝑏)) → (( 𝑥) = 𝑥 ↔ ( ‘(𝑎(.r𝑅)𝑏)) = (𝑎(.r𝑅)𝑏)))
5046, 49rspcdv 3602 . . . 4 ((𝜑𝑎𝐵𝑏𝐵) → (∀𝑥𝐵 ( 𝑥) = 𝑥 → ( ‘(𝑎(.r𝑅)𝑏)) = (𝑎(.r𝑅)𝑏)))
5121, 50mpd 15 . . 3 ((𝜑𝑎𝐵𝑏𝐵) → ( ‘(𝑎(.r𝑅)𝑏)) = (𝑎(.r𝑅)𝑏))
5239, 32oveq12d 7155 . . 3 ((𝜑𝑎𝐵𝑏𝐵) → (( 𝑏)(.r𝑅)( 𝑎)) = (𝑏(.r𝑅)𝑎))
5344, 51, 523eqtr4d 2865 . 2 ((𝜑𝑎𝐵𝑏𝐵) → ( ‘(𝑎(.r𝑅)𝑏)) = (( 𝑏)(.r𝑅)( 𝑎)))
5418fveq2d 6655 . . 3 ((𝜑𝑎𝐵) → ( ‘( 𝑎)) = ( 𝑎))
5554, 18eqtrd 2855 . 2 ((𝜑𝑎𝐵) → ( ‘( 𝑎)) = 𝑎)
562, 3, 4, 6, 9, 19, 41, 53, 55issrngd 19610 1 (𝜑𝑅 ∈ *-Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3133  cfv 6336  (class class class)co 7137  Basecbs 16461  +gcplusg 16543  .rcmulr 16544  *𝑟cstv 16545  Grpcgrp 18081  Ringcrg 19275  CRingccrg 19276  *-Ringcsr 19593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7442  ax-cnex 10574  ax-resscn 10575  ax-1cn 10576  ax-icn 10577  ax-addcl 10578  ax-addrcl 10579  ax-mulcl 10580  ax-mulrcl 10581  ax-mulcom 10582  ax-addass 10583  ax-mulass 10584  ax-distr 10585  ax-i2m1 10586  ax-1ne0 10587  ax-1rid 10588  ax-rnegex 10589  ax-rrecex 10590  ax-cnre 10591  ax-pre-lttri 10592  ax-pre-lttrn 10593  ax-pre-ltadd 10594  ax-pre-mulgt0 10595
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3012  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7095  df-ov 7140  df-oprab 7141  df-mpo 7142  df-om 7562  df-tpos 7873  df-wrecs 7928  df-recs 7989  df-rdg 8027  df-er 8270  df-map 8389  df-en 8491  df-dom 8492  df-sdom 8493  df-pnf 10658  df-mnf 10659  df-xr 10660  df-ltxr 10661  df-le 10662  df-sub 10853  df-neg 10854  df-nn 11620  df-2 11682  df-3 11683  df-ndx 16464  df-slot 16465  df-base 16467  df-sets 16468  df-plusg 16556  df-mulr 16557  df-0g 16693  df-mgm 17830  df-sgrp 17879  df-mnd 17890  df-mhm 17934  df-grp 18084  df-ghm 18334  df-cmn 18886  df-mgp 19218  df-ur 19230  df-ring 19277  df-cring 19278  df-oppr 19351  df-rnghom 19445  df-staf 19594  df-srng 19595
This theorem is referenced by:  recrng  20743  frlmphl  20903
  Copyright terms: Public domain W3C validator