![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imasdsval | Structured version Visualization version GIF version |
Description: The distance function of an image structure. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by AV, 6-Oct-2020.) |
Ref | Expression |
---|---|
imasbas.u | ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) |
imasbas.v | ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) |
imasbas.f | ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) |
imasbas.r | ⊢ (𝜑 → 𝑅 ∈ 𝑍) |
imasds.e | ⊢ 𝐸 = (dist‘𝑅) |
imasds.d | ⊢ 𝐷 = (dist‘𝑈) |
imasdsval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
imasdsval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
imasdsval.s | ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} |
Ref | Expression |
---|---|
imasdsval | ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imasbas.u | . . 3 ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) | |
2 | imasbas.v | . . 3 ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) | |
3 | imasbas.f | . . 3 ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) | |
4 | imasbas.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑍) | |
5 | imasds.e | . . 3 ⊢ 𝐸 = (dist‘𝑅) | |
6 | imasds.d | . . 3 ⊢ 𝐷 = (dist‘𝑈) | |
7 | 1, 2, 3, 4, 5, 6 | imasds 16373 | . 2 ⊢ (𝜑 → 𝐷 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ))) |
8 | simplrl 819 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → 𝑥 = 𝑋) | |
9 | 8 | eqeq2d 2768 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ↔ (𝐹‘(1st ‘(ℎ‘1))) = 𝑋)) |
10 | simplrr 820 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → 𝑦 = 𝑌) | |
11 | 10 | eqeq2d 2768 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → ((𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ↔ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌)) |
12 | 9, 11 | 3anbi12d 1547 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → (((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1))))) ↔ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1))))))) |
13 | 12 | rabbidv 3327 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} = {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))}) |
14 | imasdsval.s | . . . . . . 7 ⊢ 𝑆 = {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑋 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑌 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} | |
15 | 13, 14 | syl6eqr 2810 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} = 𝑆) |
16 | 15 | mpteq1d 4888 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) = (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
17 | 16 | rneqd 5506 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) ∧ 𝑛 ∈ ℕ) → ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) = ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
18 | 17 | iuneq2dv 4692 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))) = ∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔)))) |
19 | 18 | infeq1d 8546 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ {ℎ ∈ ((𝑉 × 𝑉) ↑𝑚 (1...𝑛)) ∣ ((𝐹‘(1st ‘(ℎ‘1))) = 𝑥 ∧ (𝐹‘(2nd ‘(ℎ‘𝑛))) = 𝑦 ∧ ∀𝑖 ∈ (1...(𝑛 − 1))(𝐹‘(2nd ‘(ℎ‘𝑖))) = (𝐹‘(1st ‘(ℎ‘(𝑖 + 1)))))} ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < )) |
20 | imasdsval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
21 | imasdsval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
22 | xrltso 12165 | . . . 4 ⊢ < Or ℝ* | |
23 | 22 | infex 8562 | . . 3 ⊢ inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ) ∈ V |
24 | 23 | a1i 11 | . 2 ⊢ (𝜑 → inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < ) ∈ V) |
25 | 7, 19, 20, 21, 24 | ovmpt2d 6951 | 1 ⊢ (𝜑 → (𝑋𝐷𝑌) = inf(∪ 𝑛 ∈ ℕ ran (𝑔 ∈ 𝑆 ↦ (ℝ*𝑠 Σg (𝐸 ∘ 𝑔))), ℝ*, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1630 ∈ wcel 2137 ∀wral 3048 {crab 3052 Vcvv 3338 ∪ ciun 4670 ↦ cmpt 4879 × cxp 5262 ran crn 5265 ∘ ccom 5268 –onto→wfo 6045 ‘cfv 6047 (class class class)co 6811 1st c1st 7329 2nd c2nd 7330 ↑𝑚 cmap 8021 infcinf 8510 1c1 10127 + caddc 10129 ℝ*cxr 10263 < clt 10264 − cmin 10456 ℕcn 11210 ...cfz 12517 Basecbs 16057 distcds 16150 Σg cgsu 16301 ℝ*𝑠cxrs 16360 “s cimas 16364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-rep 4921 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rmo 3056 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-int 4626 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-om 7229 df-1st 7331 df-2nd 7332 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-1o 7727 df-oadd 7731 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-fin 8123 df-sup 8511 df-inf 8512 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-nn 11211 df-2 11269 df-3 11270 df-4 11271 df-5 11272 df-6 11273 df-7 11274 df-8 11275 df-9 11276 df-n0 11483 df-z 11568 df-dec 11684 df-uz 11878 df-fz 12518 df-struct 16059 df-ndx 16060 df-slot 16061 df-base 16063 df-plusg 16154 df-mulr 16155 df-sca 16157 df-vsca 16158 df-ip 16159 df-tset 16160 df-ple 16161 df-ds 16164 df-imas 16368 |
This theorem is referenced by: imasdsval2 16376 |
Copyright terms: Public domain | W3C validator |