Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunrelexpmin2 Structured version   Visualization version   GIF version

Theorem iunrelexpmin2 37482
Description: The indexed union of relation exponentiation over the natural numbers (including zero) is the minimum reflexive-transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.)
Hypothesis
Ref Expression
iunrelexpmin2.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
Assertion
Ref Expression
iunrelexpmin2 ((𝑅𝑉𝑁 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁   𝑁,𝑠   𝑅,𝑛,𝑟   𝑅,𝑠   𝑛,𝑉,𝑟   𝑉,𝑠,𝑛
Allowed substitution hint:   𝐶(𝑠)

Proof of Theorem iunrelexpmin2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunrelexpmin2.def . . . . 5 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛))
21a1i 11 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟𝑟𝑛)))
3 simplr 791 . . . . 5 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑁 = ℕ0)
4 simpr 477 . . . . . 6 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑟 = 𝑅)
54oveq1d 6619 . . . . 5 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → (𝑟𝑟𝑛) = (𝑅𝑟𝑛))
63, 5iuneq12d 4512 . . . 4 (((𝑅𝑉𝑁 = ℕ0) ∧ 𝑟 = 𝑅) → 𝑛𝑁 (𝑟𝑟𝑛) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
7 elex 3198 . . . . 5 (𝑅𝑉𝑅 ∈ V)
87adantr 481 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → 𝑅 ∈ V)
9 nn0ex 11242 . . . . . 6 0 ∈ V
10 ovex 6632 . . . . . 6 (𝑅𝑟𝑛) ∈ V
119, 10iunex 7093 . . . . 5 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V
1211a1i 11 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ∈ V)
132, 6, 8, 12fvmptd 6245 . . 3 ((𝑅𝑉𝑁 = ℕ0) → (𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛))
14 relexp0g 13696 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
1514sseq1d 3611 . . . . . . 7 (𝑅𝑉 → ((𝑅𝑟0) ⊆ 𝑠 ↔ ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠))
16 relexp1g 13700 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1716sseq1d 3611 . . . . . . 7 (𝑅𝑉 → ((𝑅𝑟1) ⊆ 𝑠𝑅𝑠))
1815, 173anbi12d 1397 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)))
19 elnn0 11238 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↔ (𝑛 ∈ ℕ ∨ 𝑛 = 0))
20 oveq2 6612 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (𝑅𝑟𝑥) = (𝑅𝑟1))
2120sseq1d 3611 . . . . . . . . . . . . . 14 (𝑥 = 1 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟1) ⊆ 𝑠))
2221imbi2d 330 . . . . . . . . . . . . 13 (𝑥 = 1 → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)))
23 oveq2 6612 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (𝑅𝑟𝑥) = (𝑅𝑟𝑦))
2423sseq1d 3611 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑦) ⊆ 𝑠))
2524imbi2d 330 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠)))
26 oveq2 6612 . . . . . . . . . . . . . . 15 (𝑥 = (𝑦 + 1) → (𝑅𝑟𝑥) = (𝑅𝑟(𝑦 + 1)))
2726sseq1d 3611 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 + 1) → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠))
2827imbi2d 330 . . . . . . . . . . . . 13 (𝑥 = (𝑦 + 1) → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
29 oveq2 6612 . . . . . . . . . . . . . . 15 (𝑥 = 𝑛 → (𝑅𝑟𝑥) = (𝑅𝑟𝑛))
3029sseq1d 3611 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → ((𝑅𝑟𝑥) ⊆ 𝑠 ↔ (𝑅𝑟𝑛) ⊆ 𝑠))
3130imbi2d 330 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑥) ⊆ 𝑠) ↔ ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠)))
32 simpr2 1066 . . . . . . . . . . . . 13 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟1) ⊆ 𝑠)
33 simp1 1059 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑦 ∈ ℕ)
34 1nn 10975 . . . . . . . . . . . . . . . . . 18 1 ∈ ℕ
3534a1i 11 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 1 ∈ ℕ)
36 simp2l 1085 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → 𝑅𝑉)
37 relexpaddnn 13725 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ 1 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
3833, 35, 36, 37syl3anc 1323 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) = (𝑅𝑟(𝑦 + 1)))
39 simp2r3 1163 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑠𝑠) ⊆ 𝑠)
40 simp3 1061 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟𝑦) ⊆ 𝑠)
41 simp2r2 1162 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟1) ⊆ 𝑠)
4239, 40, 41trrelssd 13646 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑟𝑦) ∘ (𝑅𝑟1)) ⊆ 𝑠)
4338, 42eqsstr3d 3619 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ ∧ (𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) ∧ (𝑅𝑟𝑦) ⊆ 𝑠) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)
44433exp 1261 . . . . . . . . . . . . . 14 (𝑦 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ((𝑅𝑟𝑦) ⊆ 𝑠 → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4544a2d 29 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → (((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑦) ⊆ 𝑠) → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟(𝑦 + 1)) ⊆ 𝑠)))
4622, 25, 28, 31, 32, 45nnind 10982 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
47 simpr1 1065 . . . . . . . . . . . . 13 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟0) ⊆ 𝑠)
48 oveq2 6612 . . . . . . . . . . . . . 14 (𝑛 = 0 → (𝑅𝑟𝑛) = (𝑅𝑟0))
4948sseq1d 3611 . . . . . . . . . . . . 13 (𝑛 = 0 → ((𝑅𝑟𝑛) ⊆ 𝑠 ↔ (𝑅𝑟0) ⊆ 𝑠))
5047, 49syl5ibr 236 . . . . . . . . . . . 12 (𝑛 = 0 → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
5146, 50jaoi 394 . . . . . . . . . . 11 ((𝑛 ∈ ℕ ∨ 𝑛 = 0) → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
5219, 51sylbi 207 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑅𝑟𝑛) ⊆ 𝑠))
5352com12 32 . . . . . . . . 9 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → (𝑛 ∈ ℕ0 → (𝑅𝑟𝑛) ⊆ 𝑠))
5453ralrimiv 2959 . . . . . . . 8 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → ∀𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
55 iunss 4527 . . . . . . . 8 ( 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠 ↔ ∀𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
5654, 55sylibr 224 . . . . . . 7 ((𝑅𝑉 ∧ ((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠)) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)
5756ex 450 . . . . . 6 (𝑅𝑉 → (((𝑅𝑟0) ⊆ 𝑠 ∧ (𝑅𝑟1) ⊆ 𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
5818, 57sylbird 250 . . . . 5 (𝑅𝑉 → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
5958adantr 481 . . . 4 ((𝑅𝑉𝑁 = ℕ0) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
60 sseq1 3605 . . . . 5 ((𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → ((𝐶𝑅) ⊆ 𝑠 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠))
6160imbi2d 330 . . . 4 ((𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → (((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠) ↔ ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) ⊆ 𝑠)))
6259, 61syl5ibr 236 . . 3 ((𝐶𝑅) = 𝑛 ∈ ℕ0 (𝑅𝑟𝑛) → ((𝑅𝑉𝑁 = ℕ0) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠)))
6313, 62mpcom 38 . 2 ((𝑅𝑉𝑁 = ℕ0) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
6463alrimiv 1852 1 ((𝑅𝑉𝑁 = ℕ0) → ∀𝑠((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑠𝑅𝑠 ∧ (𝑠𝑠) ⊆ 𝑠) → (𝐶𝑅) ⊆ 𝑠))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384  w3a 1036  wal 1478   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  cun 3553  wss 3555   ciun 4485  cmpt 4673   I cid 4984  dom cdm 5074  ran crn 5075  cres 5076  ccom 5078  cfv 5847  (class class class)co 6604  0cc0 9880  1c1 9881   + caddc 9883  cn 10964  0cn0 11236  𝑟crelexp 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-seq 12742  df-relexp 13695
This theorem is referenced by:  dfrtrcl3  37503
  Copyright terms: Public domain W3C validator