Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpmcvr2 Structured version   Visualization version   GIF version

Theorem lhpmcvr2 34776
Description: Alternate way to express that the meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 9-Apr-2013.)
Hypotheses
Ref Expression
lhpmcvr2.b 𝐵 = (Base‘𝐾)
lhpmcvr2.l = (le‘𝐾)
lhpmcvr2.j = (join‘𝐾)
lhpmcvr2.m = (meet‘𝐾)
lhpmcvr2.a 𝐴 = (Atoms‘𝐾)
lhpmcvr2.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpmcvr2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐾,𝑝   ,𝑝   ,𝑝   𝑋,𝑝   𝑊,𝑝
Allowed substitution hints:   𝐻(𝑝)   (𝑝)

Proof of Theorem lhpmcvr2
StepHypRef Expression
1 lhpmcvr2.b . . 3 𝐵 = (Base‘𝐾)
2 lhpmcvr2.l . . 3 = (le‘𝐾)
3 lhpmcvr2.m . . 3 = (meet‘𝐾)
4 eqid 2626 . . 3 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
5 lhpmcvr2.h . . 3 𝐻 = (LHyp‘𝐾)
61, 2, 3, 4, 5lhpmcvr 34775 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑋 𝑊)( ⋖ ‘𝐾)𝑋)
7 simpll 789 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝐾 ∈ HL)
8 simprl 793 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝑋𝐵)
91, 5lhpbase 34750 . . . 4 (𝑊𝐻𝑊𝐵)
109ad2antlr 762 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → 𝑊𝐵)
11 lhpmcvr2.j . . . 4 = (join‘𝐾)
12 lhpmcvr2.a . . . 4 𝐴 = (Atoms‘𝐾)
131, 2, 11, 3, 4, 12cvrval5 34167 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑊𝐵) → ((𝑋 𝑊)( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝𝐴𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)))
147, 8, 10, 13syl3anc 1323 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ((𝑋 𝑊)( ⋖ ‘𝐾)𝑋 ↔ ∃𝑝𝐴𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋)))
156, 14mpbid 222 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑝𝐴𝑝 𝑊 ∧ (𝑝 (𝑋 𝑊)) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wrex 2913   class class class wbr 4618  cfv 5850  (class class class)co 6605  Basecbs 15776  lecple 15864  joincjn 16860  meetcmee 16861  ccvr 34015  Atomscatm 34016  HLchlt 34103  LHypclh 34736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-preset 16844  df-poset 16862  df-plt 16874  df-lub 16890  df-glb 16891  df-join 16892  df-meet 16893  df-p0 16955  df-p1 16956  df-lat 16962  df-clat 17024  df-oposet 33929  df-ol 33931  df-oml 33932  df-covers 34019  df-ats 34020  df-atl 34051  df-cvlat 34075  df-hlat 34104  df-lhyp 34740
This theorem is referenced by:  lhpmcvr5N  34779  cdleme29ex  35128  cdleme29c  35130  cdlemefrs29cpre1  35152  cdlemefr29exN  35156  cdleme32d  35198  cdleme32f  35200  cdleme48gfv1  35290  cdlemg7fvbwN  35361  cdlemg7aN  35379  dihlsscpre  35989  dihvalcqpre  35990  dihord6apre  36011  dihord4  36013  dihord5b  36014  dihord5apre  36017  dihmeetlem1N  36045  dihglblem5apreN  36046  dihglbcpreN  36055
  Copyright terms: Public domain W3C validator