Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihlsscpre Structured version   Visualization version   GIF version

Theorem dihlsscpre 35335
Description: Closure of isomorphism H for a lattice 𝐾 when ¬ 𝑋 𝑊. (Contributed by NM, 6-Mar-2014.)
Hypotheses
Ref Expression
dihval.b 𝐵 = (Base‘𝐾)
dihval.l = (le‘𝐾)
dihval.j = (join‘𝐾)
dihval.m = (meet‘𝐾)
dihval.a 𝐴 = (Atoms‘𝐾)
dihval.h 𝐻 = (LHyp‘𝐾)
dihval.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dihval.d 𝐷 = ((DIsoB‘𝐾)‘𝑊)
dihval.c 𝐶 = ((DIsoC‘𝐾)‘𝑊)
dihval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dihval.s 𝑆 = (LSubSp‘𝑈)
dihval.p = (LSSum‘𝑈)
Assertion
Ref Expression
dihlsscpre (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)

Proof of Theorem dihlsscpre
Dummy variables 𝑞 𝑢 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dihval.b . . 3 𝐵 = (Base‘𝐾)
2 dihval.l . . 3 = (le‘𝐾)
3 dihval.j . . 3 = (join‘𝐾)
4 dihval.m . . 3 = (meet‘𝐾)
5 dihval.a . . 3 𝐴 = (Atoms‘𝐾)
6 dihval.h . . 3 𝐻 = (LHyp‘𝐾)
7 dihval.i . . 3 𝐼 = ((DIsoH‘𝐾)‘𝑊)
8 dihval.d . . 3 𝐷 = ((DIsoB‘𝐾)‘𝑊)
9 dihval.c . . 3 𝐶 = ((DIsoC‘𝐾)‘𝑊)
10 dihval.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
11 dihval.s . . 3 𝑆 = (LSubSp‘𝑈)
12 dihval.p . . 3 = (LSSum‘𝑈)
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12dihvalc 35334 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼𝑋) = (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
14 simp1l 1078 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 simp2l 1080 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → 𝑞𝐴)
16 simp3ll 1125 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → ¬ 𝑞 𝑊)
1715, 16jca 553 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝑞𝐴 ∧ ¬ 𝑞 𝑊))
18 simp2r 1081 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → 𝑟𝐴)
19 simp3rl 1127 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → ¬ 𝑟 𝑊)
2018, 19jca 553 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝑟𝐴 ∧ ¬ 𝑟 𝑊))
21 simp1rl 1119 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → 𝑋𝐵)
22 simp3lr 1126 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝑞 (𝑋 𝑊)) = 𝑋)
23 simp3rr 1128 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝑟 (𝑋 𝑊)) = 𝑋)
2422, 23eqtr4d 2647 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → (𝑞 (𝑋 𝑊)) = (𝑟 (𝑋 𝑊)))
251, 2, 3, 4, 5, 6, 8, 9, 10, 12dihjust 35318 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑞𝐴 ∧ ¬ 𝑞 𝑊) ∧ (𝑟𝐴 ∧ ¬ 𝑟 𝑊) ∧ 𝑋𝐵) ∧ (𝑞 (𝑋 𝑊)) = (𝑟 (𝑋 𝑊))) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊))))
2614, 17, 20, 21, 24, 25syl131anc 1331 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴𝑟𝐴) ∧ ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋))) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊))))
27263exp 1256 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ((𝑞𝐴𝑟𝐴) → (((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋)) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊))))))
2827ralrimivv 2953 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∀𝑞𝐴𝑟𝐴 (((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋)) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊)))))
291, 2, 3, 4, 5, 6lhpmcvr2 34122 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋))
30 simpll 786 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
316, 10, 30dvhlmod 35211 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝑈 ∈ LMod)
322, 5, 6, 10, 9, 11diclss 35294 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝐶𝑞) ∈ 𝑆)
3332adantlr 747 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝐶𝑞) ∈ 𝑆)
34 hllat 33462 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ Lat)
3534ad3antrrr 762 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝐾 ∈ Lat)
36 simplrl 796 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝑋𝐵)
371, 6lhpbase 34096 . . . . . . . . . . . . . . . 16 (𝑊𝐻𝑊𝐵)
3837ad3antlr 763 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → 𝑊𝐵)
391, 4latmcl 16824 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) ∈ 𝐵)
4035, 36, 38, 39syl3anc 1318 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝑋 𝑊) ∈ 𝐵)
411, 2, 4latmle2 16849 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑊𝐵) → (𝑋 𝑊) 𝑊)
4235, 36, 38, 41syl3anc 1318 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝑋 𝑊) 𝑊)
431, 2, 6, 10, 8, 11diblss 35271 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑋 𝑊) ∈ 𝐵 ∧ (𝑋 𝑊) 𝑊)) → (𝐷‘(𝑋 𝑊)) ∈ 𝑆)
4430, 40, 42, 43syl12anc 1316 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → (𝐷‘(𝑋 𝑊)) ∈ 𝑆)
4511, 12lsmcl 18853 . . . . . . . . . . . . 13 ((𝑈 ∈ LMod ∧ (𝐶𝑞) ∈ 𝑆 ∧ (𝐷‘(𝑋 𝑊)) ∈ 𝑆) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆)
4631, 33, 44, 45syl3anc 1318 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆)
4746a1d 25 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ (𝑞𝐴 ∧ ¬ 𝑞 𝑊)) → ((𝑞 (𝑋 𝑊)) = 𝑋 → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆))
4847expr 641 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ 𝑞𝐴) → (¬ 𝑞 𝑊 → ((𝑞 (𝑋 𝑊)) = 𝑋 → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆)))
4948impd 446 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ 𝑞𝐴) → ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆))
5049ancld 574 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) ∧ 𝑞𝐴) → ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆)))
5150reximdva 3000 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → ∃𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆)))
5229, 51mpd 15 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆))
53 breq1 4581 . . . . . . . . 9 (𝑞 = 𝑟 → (𝑞 𝑊𝑟 𝑊))
5453notbid 307 . . . . . . . 8 (𝑞 = 𝑟 → (¬ 𝑞 𝑊 ↔ ¬ 𝑟 𝑊))
55 oveq1 6534 . . . . . . . . 9 (𝑞 = 𝑟 → (𝑞 (𝑋 𝑊)) = (𝑟 (𝑋 𝑊)))
5655eqeq1d 2612 . . . . . . . 8 (𝑞 = 𝑟 → ((𝑞 (𝑋 𝑊)) = 𝑋 ↔ (𝑟 (𝑋 𝑊)) = 𝑋))
5754, 56anbi12d 743 . . . . . . 7 (𝑞 = 𝑟 → ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ↔ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋)))
58 fveq2 6088 . . . . . . . 8 (𝑞 = 𝑟 → (𝐶𝑞) = (𝐶𝑟))
5958oveq1d 6542 . . . . . . 7 (𝑞 = 𝑟 → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊))))
6057, 59reusv3 4797 . . . . . 6 (∃𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) ∈ 𝑆) → (∀𝑞𝐴𝑟𝐴 (((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋)) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊)))) ↔ ∃𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
6152, 60syl 17 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (∀𝑞𝐴𝑟𝐴 (((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) ∧ (¬ 𝑟 𝑊 ∧ (𝑟 (𝑋 𝑊)) = 𝑋)) → ((𝐶𝑞) (𝐷‘(𝑋 𝑊))) = ((𝐶𝑟) (𝐷‘(𝑋 𝑊)))) ↔ ∃𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
6228, 61mpbid 221 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))
63 reusv1 4787 . . . . 5 (∃𝑞𝐴𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → (∃!𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))) ↔ ∃𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
6429, 63syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (∃!𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))) ↔ ∃𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))))
6562, 64mpbird 246 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → ∃!𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))))
66 riotacl 6503 . . 3 (∃!𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊)))) → (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))) ∈ 𝑆)
6765, 66syl 17 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝑢𝑆𝑞𝐴 ((¬ 𝑞 𝑊 ∧ (𝑞 (𝑋 𝑊)) = 𝑋) → 𝑢 = ((𝐶𝑞) (𝐷‘(𝑋 𝑊))))) ∈ 𝑆)
6813, 67eqeltrd 2688 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑋𝐵 ∧ ¬ 𝑋 𝑊)) → (𝐼𝑋) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wrex 2897  ∃!wreu 2898   class class class wbr 4578  cfv 5790  crio 6488  (class class class)co 6527  Basecbs 15644  lecple 15724  joincjn 16716  meetcmee 16717  Latclat 16817  LSSumclsm 17821  LModclmod 18635  LSubSpclss 18702  Atomscatm 33362  HLchlt 33449  LHypclh 34082  DVecHcdvh 35179  DIsoBcdib 35239  DIsoCcdic 35273  DIsoHcdih 35329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-riotaBAD 33051
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-iin 4453  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-tpos 7217  df-undef 7264  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-map 7724  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-n0 11143  df-z 11214  df-uz 11523  df-fz 12156  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-sca 15733  df-vsca 15734  df-0g 15874  df-preset 16700  df-poset 16718  df-plt 16730  df-lub 16746  df-glb 16747  df-join 16748  df-meet 16749  df-p0 16811  df-p1 16812  df-lat 16818  df-clat 16880  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-grp 17197  df-minusg 17198  df-sbg 17199  df-subg 17363  df-cntz 17522  df-lsm 17823  df-cmn 17967  df-abl 17968  df-mgp 18262  df-ur 18274  df-ring 18321  df-oppr 18395  df-dvdsr 18413  df-unit 18414  df-invr 18444  df-dvr 18455  df-drng 18521  df-lmod 18637  df-lss 18703  df-lsp 18742  df-lvec 18873  df-oposet 33275  df-ol 33277  df-oml 33278  df-covers 33365  df-ats 33366  df-atl 33397  df-cvlat 33421  df-hlat 33450  df-llines 33596  df-lplanes 33597  df-lvols 33598  df-lines 33599  df-psubsp 33601  df-pmap 33602  df-padd 33894  df-lhyp 34086  df-laut 34087  df-ldil 34202  df-ltrn 34203  df-trl 34258  df-tendo 34855  df-edring 34857  df-disoa 35130  df-dvech 35180  df-dib 35240  df-dic 35274  df-dih 35330
This theorem is referenced by:  dihvalcqpre  35336  dihlss  35351
  Copyright terms: Public domain W3C validator