Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lkr0f2 Structured version   Visualization version   GIF version

Theorem lkr0f2 33925
Description: The kernel of the zero functional is the set of all vectors. (Contributed by NM, 4-Feb-2015.)
Hypotheses
Ref Expression
lkr0f2.v 𝑉 = (Base‘𝑊)
lkr0f2.f 𝐹 = (LFnl‘𝑊)
lkr0f2.k 𝐾 = (LKer‘𝑊)
lkr0f2.d 𝐷 = (LDual‘𝑊)
lkr0f2.o 0 = (0g𝐷)
lkr0f2.w (𝜑𝑊 ∈ LMod)
lkr0f2.g (𝜑𝐺𝐹)
Assertion
Ref Expression
lkr0f2 (𝜑 → ((𝐾𝐺) = 𝑉𝐺 = 0 ))

Proof of Theorem lkr0f2
StepHypRef Expression
1 lkr0f2.w . . 3 (𝜑𝑊 ∈ LMod)
2 lkr0f2.g . . 3 (𝜑𝐺𝐹)
3 eqid 2621 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
4 eqid 2621 . . . 4 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
5 lkr0f2.v . . . 4 𝑉 = (Base‘𝑊)
6 lkr0f2.f . . . 4 𝐹 = (LFnl‘𝑊)
7 lkr0f2.k . . . 4 𝐾 = (LKer‘𝑊)
83, 4, 5, 6, 7lkr0f 33858 . . 3 ((𝑊 ∈ LMod ∧ 𝐺𝐹) → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))})))
91, 2, 8syl2anc 692 . 2 (𝜑 → ((𝐾𝐺) = 𝑉𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))})))
10 lkr0f2.d . . . 4 𝐷 = (LDual‘𝑊)
11 lkr0f2.o . . . 4 0 = (0g𝐷)
125, 3, 4, 10, 11, 1ldual0v 33914 . . 3 (𝜑0 = (𝑉 × {(0g‘(Scalar‘𝑊))}))
1312eqeq2d 2631 . 2 (𝜑 → (𝐺 = 0𝐺 = (𝑉 × {(0g‘(Scalar‘𝑊))})))
149, 13bitr4d 271 1 (𝜑 → ((𝐾𝐺) = 𝑉𝐺 = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1480  wcel 1987  {csn 4148   × cxp 5072  cfv 5847  Basecbs 15781  Scalarcsca 15865  0gc0g 16021  LModclmod 18784  LFnlclfn 33821  LKerclk 33849  LDualcld 33887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-of 6850  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-plusg 15875  df-sca 15878  df-vsca 15879  df-0g 16023  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-grp 17346  df-minusg 17347  df-sbg 17348  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-lmod 18786  df-lfl 33822  df-lkr 33850  df-ldual 33888
This theorem is referenced by:  lkrpssN  33927  lcfl8b  36270  lcfrlem9  36316
  Copyright terms: Public domain W3C validator