![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lnoppnhpg | Structured version Visualization version GIF version |
Description: If two points lie on the opposite side of a line 𝐷, they are not on the same half-plane. Theorem 9.9 of [Schwabhauser] p. 72. (Contributed by Thierry Arnoux, 4-Mar-2020.) |
Ref | Expression |
---|---|
ishpg.p | ⊢ 𝑃 = (Base‘𝐺) |
ishpg.i | ⊢ 𝐼 = (Itv‘𝐺) |
ishpg.l | ⊢ 𝐿 = (LineG‘𝐺) |
ishpg.o | ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} |
ishpg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ishpg.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
hpgbr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
hpgbr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
lnoppnhpg.1 | ⊢ (𝜑 → 𝐴𝑂𝐵) |
Ref | Expression |
---|---|
lnoppnhpg | ⊢ (𝜑 → ¬ 𝐴((hpG‘𝐺)‘𝐷)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishpg.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
2 | eqid 2760 | . . 3 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
3 | ishpg.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | ishpg.o | . . 3 ⊢ 𝑂 = {〈𝑎, 𝑏〉 ∣ ((𝑎 ∈ (𝑃 ∖ 𝐷) ∧ 𝑏 ∈ (𝑃 ∖ 𝐷)) ∧ ∃𝑡 ∈ 𝐷 𝑡 ∈ (𝑎𝐼𝑏))} | |
5 | ishpg.l | . . 3 ⊢ 𝐿 = (LineG‘𝐺) | |
6 | ishpg.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
7 | ishpg.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
8 | hpgbr.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | oppnid 25858 | . 2 ⊢ (𝜑 → ¬ 𝐵𝑂𝐵) |
10 | hpgbr.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
11 | lnoppnhpg.1 | . . 3 ⊢ (𝜑 → 𝐴𝑂𝐵) | |
12 | 1, 3, 5, 4, 7, 6, 10, 8, 8, 11 | lnopp2hpgb 25875 | . 2 ⊢ (𝜑 → (𝐵𝑂𝐵 ↔ 𝐴((hpG‘𝐺)‘𝐷)𝐵)) |
13 | 9, 12 | mtbid 313 | 1 ⊢ (𝜑 → ¬ 𝐴((hpG‘𝐺)‘𝐷)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 ∖ cdif 3712 class class class wbr 4804 {copab 4864 ran crn 5267 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 distcds 16172 TarskiGcstrkg 25549 Itvcitv 25555 LineGclng 25556 hpGchpg 25869 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-map 8027 df-pm 8028 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-card 8975 df-cda 9202 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-n0 11505 df-xnn0 11576 df-z 11590 df-uz 11900 df-fz 12540 df-fzo 12680 df-hash 13332 df-word 13505 df-concat 13507 df-s1 13508 df-s2 13813 df-s3 13814 df-trkgc 25567 df-trkgb 25568 df-trkgcb 25569 df-trkgld 25571 df-trkg 25572 df-cgrg 25626 df-leg 25698 df-hlg 25716 df-mir 25768 df-rag 25809 df-perpg 25811 df-hpg 25870 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |