MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lt2mul2div Structured version   Visualization version   GIF version

Theorem lt2mul2div 10845
Description: 'Less than' relationship between division and multiplication. (Contributed by NM, 8-Jan-2006.)
Assertion
Ref Expression
lt2mul2div (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵)))

Proof of Theorem lt2mul2div
StepHypRef Expression
1 recn 9970 . . . . . . . . 9 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
2 recn 9970 . . . . . . . . 9 (𝐷 ∈ ℝ → 𝐷 ∈ ℂ)
3 mulcom 9966 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ) → (𝐶 · 𝐷) = (𝐷 · 𝐶))
41, 2, 3syl2an 494 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 · 𝐷) = (𝐷 · 𝐶))
54oveq1d 6619 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → ((𝐶 · 𝐷) / 𝐵) = ((𝐷 · 𝐶) / 𝐵))
65adantl 482 . . . . . 6 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐶 · 𝐷) / 𝐵) = ((𝐷 · 𝐶) / 𝐵))
72ad2antll 764 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℂ)
81ad2antrl 763 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℂ)
9 recn 9970 . . . . . . . . . 10 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
109adantr 481 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℂ)
11 gt0ne0 10437 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
1210, 11jca 554 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
1312adantr 481 . . . . . . 7 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
14 divass 10647 . . . . . . 7 ((𝐷 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐷 · 𝐶) / 𝐵) = (𝐷 · (𝐶 / 𝐵)))
157, 8, 13, 14syl3anc 1323 . . . . . 6 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐷 · 𝐶) / 𝐵) = (𝐷 · (𝐶 / 𝐵)))
166, 15eqtrd 2655 . . . . 5 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐶 · 𝐷) / 𝐵) = (𝐷 · (𝐶 / 𝐵)))
1716adantrrr 760 . . . 4 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐶 · 𝐷) / 𝐵) = (𝐷 · (𝐶 / 𝐵)))
1817adantll 749 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐶 · 𝐷) / 𝐵) = (𝐷 · (𝐶 / 𝐵)))
1918breq2d 4625 . 2 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → (𝐴 < ((𝐶 · 𝐷) / 𝐵) ↔ 𝐴 < (𝐷 · (𝐶 / 𝐵))))
20 simpll 789 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → 𝐴 ∈ ℝ)
21 remulcl 9965 . . . . 5 ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) → (𝐶 · 𝐷) ∈ ℝ)
2221adantrr 752 . . . 4 ((𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → (𝐶 · 𝐷) ∈ ℝ)
2322adantl 482 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → (𝐶 · 𝐷) ∈ ℝ)
24 simplr 791 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
25 ltmuldiv 10840 . . 3 ((𝐴 ∈ ℝ ∧ (𝐶 · 𝐷) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ 𝐴 < ((𝐶 · 𝐷) / 𝐵)))
2620, 23, 24, 25syl3anc 1323 . 2 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ 𝐴 < ((𝐶 · 𝐷) / 𝐵)))
27 simpl 473 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
2827, 11jca 554 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
29 redivcl 10688 . . . . . . 7 ((𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐶 / 𝐵) ∈ ℝ)
30293expb 1263 . . . . . 6 ((𝐶 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐶 / 𝐵) ∈ ℝ)
3128, 30sylan2 491 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐶 / 𝐵) ∈ ℝ)
3231ancoms 469 . . . 4 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ 𝐶 ∈ ℝ) → (𝐶 / 𝐵) ∈ ℝ)
3332ad2ant2lr 783 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → (𝐶 / 𝐵) ∈ ℝ)
34 simprr 795 . . 3 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → (𝐷 ∈ ℝ ∧ 0 < 𝐷))
35 ltdivmul 10842 . . 3 ((𝐴 ∈ ℝ ∧ (𝐶 / 𝐵) ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷)) → ((𝐴 / 𝐷) < (𝐶 / 𝐵) ↔ 𝐴 < (𝐷 · (𝐶 / 𝐵))))
3620, 33, 34, 35syl3anc 1323 . 2 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐷) < (𝐶 / 𝐵) ↔ 𝐴 < (𝐷 · (𝐶 / 𝐵))))
3719, 26, 363bitr4d 300 1 (((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wne 2790   class class class wbr 4613  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880   · cmul 9885   < clt 10018   / cdiv 10628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629
This theorem is referenced by:  lt2mul2divd  11883  efcllem  14733  icopnfhmeo  22650  nmoleub2lem3  22823  dvcvx  23687  log2ub  24576  chebbnd1lem3  25060  subfaclim  30878
  Copyright terms: Public domain W3C validator