MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltmnq Structured version   Visualization version   GIF version

Theorem ltmnq 9738
Description: Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltmnq (𝐶Q → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))

Proof of Theorem ltmnq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulnqf 9715 . . 3 ·Q :(Q × Q)⟶Q
21fdmi 6009 . 2 dom ·Q = (Q × Q)
3 ltrelnq 9692 . 2 <Q ⊆ (Q × Q)
4 0nnq 9690 . 2 ¬ ∅ ∈ Q
5 elpqn 9691 . . . . . . . . . 10 (𝐶Q𝐶 ∈ (N × N))
653ad2ant3 1082 . . . . . . . . 9 ((𝐴Q𝐵Q𝐶Q) → 𝐶 ∈ (N × N))
7 xp1st 7143 . . . . . . . . 9 (𝐶 ∈ (N × N) → (1st𝐶) ∈ N)
86, 7syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (1st𝐶) ∈ N)
9 xp2nd 7144 . . . . . . . . 9 (𝐶 ∈ (N × N) → (2nd𝐶) ∈ N)
106, 9syl 17 . . . . . . . 8 ((𝐴Q𝐵Q𝐶Q) → (2nd𝐶) ∈ N)
11 mulclpi 9659 . . . . . . . 8 (((1st𝐶) ∈ N ∧ (2nd𝐶) ∈ N) → ((1st𝐶) ·N (2nd𝐶)) ∈ N)
128, 10, 11syl2anc 692 . . . . . . 7 ((𝐴Q𝐵Q𝐶Q) → ((1st𝐶) ·N (2nd𝐶)) ∈ N)
13 ltmpi 9670 . . . . . . 7 (((1st𝐶) ·N (2nd𝐶)) ∈ N → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
1412, 13syl 17 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴)))))
15 fvex 6158 . . . . . . . 8 (1st𝐶) ∈ V
16 fvex 6158 . . . . . . . 8 (2nd𝐶) ∈ V
17 fvex 6158 . . . . . . . 8 (1st𝐴) ∈ V
18 mulcompi 9662 . . . . . . . 8 (𝑥 ·N 𝑦) = (𝑦 ·N 𝑥)
19 mulasspi 9663 . . . . . . . 8 ((𝑥 ·N 𝑦) ·N 𝑧) = (𝑥 ·N (𝑦 ·N 𝑧))
20 fvex 6158 . . . . . . . 8 (2nd𝐵) ∈ V
2115, 16, 17, 18, 19, 20caov4 6818 . . . . . . 7 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) = (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵)))
22 fvex 6158 . . . . . . . 8 (1st𝐵) ∈ V
23 fvex 6158 . . . . . . . 8 (2nd𝐴) ∈ V
2415, 16, 22, 18, 19, 23caov4 6818 . . . . . . 7 (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) = (((1st𝐶) ·N (1st𝐵)) ·N ((2nd𝐶) ·N (2nd𝐴)))
2521, 24breq12i 4622 . . . . . 6 ((((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐴) ·N (2nd𝐵))) <N (((1st𝐶) ·N (2nd𝐶)) ·N ((1st𝐵) ·N (2nd𝐴))) ↔ (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵))) <N (((1st𝐶) ·N (1st𝐵)) ·N ((2nd𝐶) ·N (2nd𝐴))))
2614, 25syl6bb 276 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵))) <N (((1st𝐶) ·N (1st𝐵)) ·N ((2nd𝐶) ·N (2nd𝐴)))))
27 ordpipq 9708 . . . . 5 (⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩ ↔ (((1st𝐶) ·N (1st𝐴)) ·N ((2nd𝐶) ·N (2nd𝐵))) <N (((1st𝐶) ·N (1st𝐵)) ·N ((2nd𝐶) ·N (2nd𝐴))))
2826, 27syl6bbr 278 . . . 4 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ ⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩))
29 elpqn 9691 . . . . . . 7 (𝐴Q𝐴 ∈ (N × N))
30293ad2ant1 1080 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐴 ∈ (N × N))
31 mulpipq2 9705 . . . . . 6 ((𝐶 ∈ (N × N) ∧ 𝐴 ∈ (N × N)) → (𝐶 ·pQ 𝐴) = ⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩)
326, 30, 31syl2anc 692 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 ·pQ 𝐴) = ⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩)
33 elpqn 9691 . . . . . . 7 (𝐵Q𝐵 ∈ (N × N))
34333ad2ant2 1081 . . . . . 6 ((𝐴Q𝐵Q𝐶Q) → 𝐵 ∈ (N × N))
35 mulpipq2 9705 . . . . . 6 ((𝐶 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐶 ·pQ 𝐵) = ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩)
366, 34, 35syl2anc 692 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 ·pQ 𝐵) = ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩)
3732, 36breq12d 4626 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 ·pQ 𝐴) <pQ (𝐶 ·pQ 𝐵) ↔ ⟨((1st𝐶) ·N (1st𝐴)), ((2nd𝐶) ·N (2nd𝐴))⟩ <pQ ⟨((1st𝐶) ·N (1st𝐵)), ((2nd𝐶) ·N (2nd𝐵))⟩))
3828, 37bitr4d 271 . . 3 ((𝐴Q𝐵Q𝐶Q) → (((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴)) ↔ (𝐶 ·pQ 𝐴) <pQ (𝐶 ·pQ 𝐵)))
39 ordpinq 9709 . . . 4 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
40393adant3 1079 . . 3 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ ((1st𝐴) ·N (2nd𝐵)) <N ((1st𝐵) ·N (2nd𝐴))))
41 mulpqnq 9707 . . . . . . 7 ((𝐶Q𝐴Q) → (𝐶 ·Q 𝐴) = ([Q]‘(𝐶 ·pQ 𝐴)))
4241ancoms 469 . . . . . 6 ((𝐴Q𝐶Q) → (𝐶 ·Q 𝐴) = ([Q]‘(𝐶 ·pQ 𝐴)))
43423adant2 1078 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 ·Q 𝐴) = ([Q]‘(𝐶 ·pQ 𝐴)))
44 mulpqnq 9707 . . . . . . 7 ((𝐶Q𝐵Q) → (𝐶 ·Q 𝐵) = ([Q]‘(𝐶 ·pQ 𝐵)))
4544ancoms 469 . . . . . 6 ((𝐵Q𝐶Q) → (𝐶 ·Q 𝐵) = ([Q]‘(𝐶 ·pQ 𝐵)))
46453adant1 1077 . . . . 5 ((𝐴Q𝐵Q𝐶Q) → (𝐶 ·Q 𝐵) = ([Q]‘(𝐶 ·pQ 𝐵)))
4743, 46breq12d 4626 . . . 4 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵) ↔ ([Q]‘(𝐶 ·pQ 𝐴)) <Q ([Q]‘(𝐶 ·pQ 𝐵))))
48 lterpq 9736 . . . 4 ((𝐶 ·pQ 𝐴) <pQ (𝐶 ·pQ 𝐵) ↔ ([Q]‘(𝐶 ·pQ 𝐴)) <Q ([Q]‘(𝐶 ·pQ 𝐵)))
4947, 48syl6bbr 278 . . 3 ((𝐴Q𝐵Q𝐶Q) → ((𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵) ↔ (𝐶 ·pQ 𝐴) <pQ (𝐶 ·pQ 𝐵)))
5038, 40, 493bitr4d 300 . 2 ((𝐴Q𝐵Q𝐶Q) → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
512, 3, 4, 50ndmovord 6777 1 (𝐶Q → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1036   = wceq 1480  wcel 1987  cop 4154   class class class wbr 4613   × cxp 5072  cfv 5847  (class class class)co 6604  1st c1st 7111  2nd c2nd 7112  Ncnpi 9610   ·N cmi 9612   <N clti 9613   ·pQ cmpq 9615   <pQ cltpq 9616  Qcnq 9618  [Q]cerq 9620   ·Q cmq 9622   <Q cltq 9624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-omul 7510  df-er 7687  df-ni 9638  df-mi 9640  df-lti 9641  df-mpq 9675  df-ltpq 9676  df-enq 9677  df-nq 9678  df-erq 9679  df-mq 9681  df-1nq 9682  df-ltnq 9684
This theorem is referenced by:  ltaddnq  9740  ltrnq  9745  addclprlem1  9782  mulclprlem  9785  mulclpr  9786  distrlem4pr  9792  1idpr  9795  prlem934  9799  prlem936  9813  reclem3pr  9815  reclem4pr  9816
  Copyright terms: Public domain W3C validator