MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltrnq Structured version   Visualization version   GIF version

Theorem ltrnq 9761
Description: Ordering property of reciprocal for positive fractions. Proposition 9-2.6(iv) of [Gleason] p. 120. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ltrnq (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴))

Proof of Theorem ltrnq
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelnq 9708 . . 3 <Q ⊆ (Q × Q)
21brel 5138 . 2 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
31brel 5138 . . 3 ((*Q𝐵) <Q (*Q𝐴) → ((*Q𝐵) ∈ Q ∧ (*Q𝐴) ∈ Q))
4 dmrecnq 9750 . . . . 5 dom *Q = Q
5 0nnq 9706 . . . . 5 ¬ ∅ ∈ Q
64, 5ndmfvrcl 6186 . . . 4 ((*Q𝐵) ∈ Q𝐵Q)
74, 5ndmfvrcl 6186 . . . 4 ((*Q𝐴) ∈ Q𝐴Q)
86, 7anim12ci 590 . . 3 (((*Q𝐵) ∈ Q ∧ (*Q𝐴) ∈ Q) → (𝐴Q𝐵Q))
93, 8syl 17 . 2 ((*Q𝐵) <Q (*Q𝐴) → (𝐴Q𝐵Q))
10 breq1 4626 . . . 4 (𝑥 = 𝐴 → (𝑥 <Q 𝑦𝐴 <Q 𝑦))
11 fveq2 6158 . . . . 5 (𝑥 = 𝐴 → (*Q𝑥) = (*Q𝐴))
1211breq2d 4635 . . . 4 (𝑥 = 𝐴 → ((*Q𝑦) <Q (*Q𝑥) ↔ (*Q𝑦) <Q (*Q𝐴)))
1310, 12bibi12d 335 . . 3 (𝑥 = 𝐴 → ((𝑥 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝑥)) ↔ (𝐴 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝐴))))
14 breq2 4627 . . . 4 (𝑦 = 𝐵 → (𝐴 <Q 𝑦𝐴 <Q 𝐵))
15 fveq2 6158 . . . . 5 (𝑦 = 𝐵 → (*Q𝑦) = (*Q𝐵))
1615breq1d 4633 . . . 4 (𝑦 = 𝐵 → ((*Q𝑦) <Q (*Q𝐴) ↔ (*Q𝐵) <Q (*Q𝐴)))
1714, 16bibi12d 335 . . 3 (𝑦 = 𝐵 → ((𝐴 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝐴)) ↔ (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴))))
18 recclnq 9748 . . . . . 6 (𝑥Q → (*Q𝑥) ∈ Q)
19 recclnq 9748 . . . . . 6 (𝑦Q → (*Q𝑦) ∈ Q)
20 mulclnq 9729 . . . . . 6 (((*Q𝑥) ∈ Q ∧ (*Q𝑦) ∈ Q) → ((*Q𝑥) ·Q (*Q𝑦)) ∈ Q)
2118, 19, 20syl2an 494 . . . . 5 ((𝑥Q𝑦Q) → ((*Q𝑥) ·Q (*Q𝑦)) ∈ Q)
22 ltmnq 9754 . . . . 5 (((*Q𝑥) ·Q (*Q𝑦)) ∈ Q → (𝑥 <Q 𝑦 ↔ (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) <Q (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦)))
2321, 22syl 17 . . . 4 ((𝑥Q𝑦Q) → (𝑥 <Q 𝑦 ↔ (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) <Q (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦)))
24 mulcomnq 9735 . . . . . . 7 (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) = (𝑥 ·Q ((*Q𝑥) ·Q (*Q𝑦)))
25 mulassnq 9741 . . . . . . 7 ((𝑥 ·Q (*Q𝑥)) ·Q (*Q𝑦)) = (𝑥 ·Q ((*Q𝑥) ·Q (*Q𝑦)))
26 mulcomnq 9735 . . . . . . 7 ((𝑥 ·Q (*Q𝑥)) ·Q (*Q𝑦)) = ((*Q𝑦) ·Q (𝑥 ·Q (*Q𝑥)))
2724, 25, 263eqtr2i 2649 . . . . . 6 (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) = ((*Q𝑦) ·Q (𝑥 ·Q (*Q𝑥)))
28 recidnq 9747 . . . . . . . 8 (𝑥Q → (𝑥 ·Q (*Q𝑥)) = 1Q)
2928oveq2d 6631 . . . . . . 7 (𝑥Q → ((*Q𝑦) ·Q (𝑥 ·Q (*Q𝑥))) = ((*Q𝑦) ·Q 1Q))
30 mulidnq 9745 . . . . . . . 8 ((*Q𝑦) ∈ Q → ((*Q𝑦) ·Q 1Q) = (*Q𝑦))
3119, 30syl 17 . . . . . . 7 (𝑦Q → ((*Q𝑦) ·Q 1Q) = (*Q𝑦))
3229, 31sylan9eq 2675 . . . . . 6 ((𝑥Q𝑦Q) → ((*Q𝑦) ·Q (𝑥 ·Q (*Q𝑥))) = (*Q𝑦))
3327, 32syl5eq 2667 . . . . 5 ((𝑥Q𝑦Q) → (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) = (*Q𝑦))
34 mulassnq 9741 . . . . . . 7 (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦) = ((*Q𝑥) ·Q ((*Q𝑦) ·Q 𝑦))
35 mulcomnq 9735 . . . . . . . 8 ((*Q𝑦) ·Q 𝑦) = (𝑦 ·Q (*Q𝑦))
3635oveq2i 6626 . . . . . . 7 ((*Q𝑥) ·Q ((*Q𝑦) ·Q 𝑦)) = ((*Q𝑥) ·Q (𝑦 ·Q (*Q𝑦)))
3734, 36eqtri 2643 . . . . . 6 (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦) = ((*Q𝑥) ·Q (𝑦 ·Q (*Q𝑦)))
38 recidnq 9747 . . . . . . . 8 (𝑦Q → (𝑦 ·Q (*Q𝑦)) = 1Q)
3938oveq2d 6631 . . . . . . 7 (𝑦Q → ((*Q𝑥) ·Q (𝑦 ·Q (*Q𝑦))) = ((*Q𝑥) ·Q 1Q))
40 mulidnq 9745 . . . . . . . 8 ((*Q𝑥) ∈ Q → ((*Q𝑥) ·Q 1Q) = (*Q𝑥))
4118, 40syl 17 . . . . . . 7 (𝑥Q → ((*Q𝑥) ·Q 1Q) = (*Q𝑥))
4239, 41sylan9eqr 2677 . . . . . 6 ((𝑥Q𝑦Q) → ((*Q𝑥) ·Q (𝑦 ·Q (*Q𝑦))) = (*Q𝑥))
4337, 42syl5eq 2667 . . . . 5 ((𝑥Q𝑦Q) → (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦) = (*Q𝑥))
4433, 43breq12d 4636 . . . 4 ((𝑥Q𝑦Q) → ((((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑥) <Q (((*Q𝑥) ·Q (*Q𝑦)) ·Q 𝑦) ↔ (*Q𝑦) <Q (*Q𝑥)))
4523, 44bitrd 268 . . 3 ((𝑥Q𝑦Q) → (𝑥 <Q 𝑦 ↔ (*Q𝑦) <Q (*Q𝑥)))
4613, 17, 45vtocl2ga 3264 . 2 ((𝐴Q𝐵Q) → (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴)))
472, 9, 46pm5.21nii 368 1 (𝐴 <Q 𝐵 ↔ (*Q𝐵) <Q (*Q𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1480  wcel 1987   class class class wbr 4623  cfv 5857  (class class class)co 6615  Qcnq 9634  1Qc1q 9635   ·Q cmq 9638  *Qcrq 9639   <Q cltq 9640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-omul 7525  df-er 7702  df-ni 9654  df-mi 9656  df-lti 9657  df-mpq 9691  df-ltpq 9692  df-enq 9693  df-nq 9694  df-erq 9695  df-mq 9697  df-1nq 9698  df-rq 9699  df-ltnq 9700
This theorem is referenced by:  addclprlem1  9798  reclem2pr  9830  reclem3pr  9831
  Copyright terms: Public domain W3C validator