MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matvscl Structured version   Visualization version   GIF version

Theorem matvscl 20218
Description: Closure of the scalar multiplication in the matrix ring. (lmodvscl 18861 analog.) (Contributed by AV, 27-Nov-2019.)
Hypotheses
Ref Expression
matvscl.k 𝐾 = (Base‘𝑅)
matvscl.a 𝐴 = (𝑁 Mat 𝑅)
matvscl.b 𝐵 = (Base‘𝐴)
matvscl.s · = ( ·𝑠𝐴)
Assertion
Ref Expression
matvscl (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑋𝐵)) → (𝐶 · 𝑋) ∈ 𝐵)

Proof of Theorem matvscl
StepHypRef Expression
1 matvscl.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
21matlmod 20216 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
32adantr 481 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑋𝐵)) → 𝐴 ∈ LMod)
4 matvscl.k . . . . . . 7 𝐾 = (Base‘𝑅)
51matsca2 20207 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴))
65fveq2d 6182 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑅) = (Base‘(Scalar‘𝐴)))
74, 6syl5eq 2666 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐾 = (Base‘(Scalar‘𝐴)))
87eleq2d 2685 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐶𝐾𝐶 ∈ (Base‘(Scalar‘𝐴))))
98biimpd 219 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐶𝐾𝐶 ∈ (Base‘(Scalar‘𝐴))))
109adantrd 484 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝐶𝐾𝑋𝐵) → 𝐶 ∈ (Base‘(Scalar‘𝐴))))
1110imp 445 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑋𝐵)) → 𝐶 ∈ (Base‘(Scalar‘𝐴)))
12 simprr 795 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑋𝐵)) → 𝑋𝐵)
13 matvscl.b . . 3 𝐵 = (Base‘𝐴)
14 eqid 2620 . . 3 (Scalar‘𝐴) = (Scalar‘𝐴)
15 matvscl.s . . 3 · = ( ·𝑠𝐴)
16 eqid 2620 . . 3 (Base‘(Scalar‘𝐴)) = (Base‘(Scalar‘𝐴))
1713, 14, 15, 16lmodvscl 18861 . 2 ((𝐴 ∈ LMod ∧ 𝐶 ∈ (Base‘(Scalar‘𝐴)) ∧ 𝑋𝐵) → (𝐶 · 𝑋) ∈ 𝐵)
183, 11, 12, 17syl3anc 1324 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝐶𝐾𝑋𝐵)) → (𝐶 · 𝑋) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1481  wcel 1988  cfv 5876  (class class class)co 6635  Fincfn 7940  Basecbs 15838  Scalarcsca 15925   ·𝑠 cvsca 15926  Ringcrg 18528  LModclmod 18844   Mat cmat 20194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-ot 4177  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-oadd 7549  df-er 7727  df-map 7844  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-fz 12312  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-hom 15947  df-cco 15948  df-0g 16083  df-prds 16089  df-pws 16091  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-grp 17406  df-minusg 17407  df-sbg 17408  df-subg 17572  df-mgp 18471  df-ur 18483  df-ring 18530  df-subrg 18759  df-lmod 18846  df-lss 18914  df-sra 19153  df-rgmod 19154  df-dsmm 20057  df-frlm 20072  df-mat 20195
This theorem is referenced by:  dmatscmcl  20290  scmatscmiddistr  20295  scmatmats  20298  scmatscm  20300  scmataddcl  20303  scmatsubcl  20304  scmatmulcl  20305  smatvscl  20311  scmatrhmcl  20315  scmatf1  20318  1pmatscmul  20488  mat2pmatlin  20521  mat2pmatscmxcl  20526  m2pmfzgsumcl  20534  monmatcollpw  20565  pmatcollpw  20567  pmatcollpwfi  20568  chmatcl  20614  chmatval  20615  chmaidscmat  20634  cpmidpmatlem2  20657  chcoeffeqlem  20671
  Copyright terms: Public domain W3C validator