MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  metust Structured version   Visualization version   GIF version

Theorem metust 23168
Description: The uniform structure generated by a metric 𝐷. (Contributed by Thierry Arnoux, 26-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
Assertion
Ref Expression
metust ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋))
Distinct variable groups:   𝐷,𝑎   𝑋,𝑎   𝐹,𝑎

Proof of Theorem metust
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . 4 𝐹 = ran (𝑎 ∈ ℝ+ ↦ (𝐷 “ (0[,)𝑎)))
21metustfbas 23167 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
3 fgcl 22486 . . 3 (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
4 filsspw 22459 . . 3 (((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋))
52, 3, 43syl 18 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋))
6 filtop 22463 . . 3 (((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) → (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹))
72, 3, 63syl 18 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹))
82, 3syl 17 . . . . . . . 8 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
98ad3antrrr 728 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
10 simpllr 774 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
11 simplr 767 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑤 ∈ 𝒫 (𝑋 × 𝑋))
1211elpwid 4550 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑤 ⊆ (𝑋 × 𝑋))
13 simpr 487 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑣𝑤)
14 filss 22461 . . . . . . 7 ((((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) ∧ (𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ 𝑤 ⊆ (𝑋 × 𝑋) ∧ 𝑣𝑤)) → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹))
159, 10, 12, 13, 14syl13anc 1368 . . . . . 6 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) ∧ 𝑣𝑤) → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹))
1615ex 415 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ 𝒫 (𝑋 × 𝑋)) → (𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)))
1716ralrimiva 3182 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)))
188ad2antrr 724 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
19 simplr 767 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
20 simpr 487 . . . . . 6 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹))
21 filin 22462 . . . . . 6 ((((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹))
2218, 19, 20, 21syl3anc 1367 . . . . 5 ((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹))
2322ralrimiva 3182 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹))
241metustid 23164 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑢𝐹) → ( I ↾ 𝑋) ⊆ 𝑢)
2524ad5ant24 759 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ( I ↾ 𝑋) ⊆ 𝑢)
26 simpr 487 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢𝑣)
2725, 26sstrd 3977 . . . . . 6 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ( I ↾ 𝑋) ⊆ 𝑣)
28 elfg 22479 . . . . . . . . 9 (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → (𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ↔ (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑢𝐹 𝑢𝑣)))
2928biimpa 479 . . . . . . . 8 ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (𝑣 ⊆ (𝑋 × 𝑋) ∧ ∃𝑢𝐹 𝑢𝑣))
3029simprd 498 . . . . . . 7 ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑢𝐹 𝑢𝑣)
312, 30sylan 582 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑢𝐹 𝑢𝑣)
3227, 31r19.29a 3289 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ( I ↾ 𝑋) ⊆ 𝑣)
338ad3antrrr 728 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)))
342adantr 483 . . . . . . . . . 10 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝐹 ∈ (fBas‘(𝑋 × 𝑋)))
35 ssfg 22480 . . . . . . . . . 10 (𝐹 ∈ (fBas‘(𝑋 × 𝑋)) → 𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹))
3634, 35syl 17 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹))
3736ad2antrr 724 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹))
38 simplr 767 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢𝐹)
3937, 38sseldd 3968 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢 ∈ ((𝑋 × 𝑋)filGen𝐹))
4029simpld 497 . . . . . . . . . 10 ((𝐹 ∈ (fBas‘(𝑋 × 𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ⊆ (𝑋 × 𝑋))
412, 40sylan 582 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ⊆ (𝑋 × 𝑋))
4241ad2antrr 724 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑣 ⊆ (𝑋 × 𝑋))
43 cnvss 5743 . . . . . . . . 9 (𝑣 ⊆ (𝑋 × 𝑋) → 𝑣(𝑋 × 𝑋))
44 cnvxp 6014 . . . . . . . . 9 (𝑋 × 𝑋) = (𝑋 × 𝑋)
4543, 44sseqtrdi 4017 . . . . . . . 8 (𝑣 ⊆ (𝑋 × 𝑋) → 𝑣 ⊆ (𝑋 × 𝑋))
4642, 45syl 17 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑣 ⊆ (𝑋 × 𝑋))
471metustsym 23165 . . . . . . . . 9 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑢𝐹) → 𝑢 = 𝑢)
4847ad5ant24 759 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢 = 𝑢)
49 cnvss 5743 . . . . . . . . 9 (𝑢𝑣𝑢𝑣)
5049adantl 484 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢𝑣)
5148, 50eqsstrrd 4006 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑢𝑣)
52 filss 22461 . . . . . . 7 ((((𝑋 × 𝑋)filGen𝐹) ∈ (Fil‘(𝑋 × 𝑋)) ∧ (𝑢 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ 𝑣 ⊆ (𝑋 × 𝑋) ∧ 𝑢𝑣)) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
5333, 39, 46, 51, 52syl13anc 1368 . . . . . 6 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
5453, 31r19.29a 3289 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹))
551metustexhalf 23166 . . . . . . . . 9 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑢𝐹) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑢)
5655ad4ant13 749 . . . . . . . 8 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑢)
57 r19.41v 3347 . . . . . . . . 9 (∃𝑤𝐹 ((𝑤𝑤) ⊆ 𝑢𝑢𝑣) ↔ (∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑢𝑢𝑣))
58 sstr 3975 . . . . . . . . . 10 (((𝑤𝑤) ⊆ 𝑢𝑢𝑣) → (𝑤𝑤) ⊆ 𝑣)
5958reximi 3243 . . . . . . . . 9 (∃𝑤𝐹 ((𝑤𝑤) ⊆ 𝑢𝑢𝑣) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣)
6057, 59sylbir 237 . . . . . . . 8 ((∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑢𝑢𝑣) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣)
6156, 60sylancom 590 . . . . . . 7 (((((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ 𝑢𝐹) ∧ 𝑢𝑣) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣)
6261, 31r19.29a 3289 . . . . . 6 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣)
63 ssrexv 4034 . . . . . 6 (𝐹 ⊆ ((𝑋 × 𝑋)filGen𝐹) → (∃𝑤𝐹 (𝑤𝑤) ⊆ 𝑣 → ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣))
6436, 62, 63sylc 65 . . . . 5 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)
6532, 54, 643jca 1124 . . . 4 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣))
6617, 23, 653jca 1124 . . 3 (((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) ∧ 𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)) → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)))
6766ralrimiva 3182 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)(∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)))
68 elfvex 6703 . . . 4 (𝐷 ∈ (PsMet‘𝑋) → 𝑋 ∈ V)
6968adantl 484 . . 3 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → 𝑋 ∈ V)
70 isust 22812 . . 3 (𝑋 ∈ V → (((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) ↔ (((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)(∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)))))
7169, 70syl 17 . 2 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → (((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋) ↔ (((𝑋 × 𝑋)filGen𝐹) ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∀𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹)(∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)) ∧ ∀𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑣𝑤) ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣 ∈ ((𝑋 × 𝑋)filGen𝐹) ∧ ∃𝑤 ∈ ((𝑋 × 𝑋)filGen𝐹)(𝑤𝑤) ⊆ 𝑣)))))
725, 7, 67, 71mpbir3and 1338 1 ((𝑋 ≠ ∅ ∧ 𝐷 ∈ (PsMet‘𝑋)) → ((𝑋 × 𝑋)filGen𝐹) ∈ (UnifOn‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  Vcvv 3494  cin 3935  wss 3936  c0 4291  𝒫 cpw 4539  cmpt 5146   I cid 5459   × cxp 5553  ccnv 5554  ran crn 5556  cres 5557  cima 5558  ccom 5559  cfv 6355  (class class class)co 7156  0cc0 10537  +crp 12390  [,)cico 12741  PsMetcpsmet 20529  fBascfbas 20533  filGencfg 20534  Filcfil 22453  UnifOncust 22808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-2 11701  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ico 12745  df-psmet 20537  df-fbas 20542  df-fg 20543  df-fil 22454  df-ust 22809
This theorem is referenced by:  cfilucfil  23169  metuust  23170  metucn  23181
  Copyright terms: Public domain W3C validator