Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mrsubvr Structured version   Visualization version   GIF version

Theorem mrsubvr 31151
Description: The value of a substituted variable. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mrsubvr.v 𝑉 = (mVR‘𝑇)
mrsubvr.r 𝑅 = (mREx‘𝑇)
mrsubvr.s 𝑆 = (mRSubst‘𝑇)
Assertion
Ref Expression
mrsubvr ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐴) → ((𝑆𝐹)‘⟨“𝑋”⟩) = (𝐹𝑋))

Proof of Theorem mrsubvr
StepHypRef Expression
1 ssun2 3760 . . . 4 𝑉 ⊆ ((mCN‘𝑇) ∪ 𝑉)
2 simp2 1060 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐴) → 𝐴𝑉)
3 simp3 1061 . . . . 5 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐴) → 𝑋𝐴)
42, 3sseldd 3588 . . . 4 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐴) → 𝑋𝑉)
51, 4sseldi 3585 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐴) → 𝑋 ∈ ((mCN‘𝑇) ∪ 𝑉))
6 eqid 2621 . . . 4 (mCN‘𝑇) = (mCN‘𝑇)
7 mrsubvr.v . . . 4 𝑉 = (mVR‘𝑇)
8 mrsubvr.r . . . 4 𝑅 = (mREx‘𝑇)
9 mrsubvr.s . . . 4 𝑆 = (mRSubst‘𝑇)
106, 7, 8, 9mrsubcv 31150 . . 3 ((𝐹:𝐴𝑅𝐴𝑉𝑋 ∈ ((mCN‘𝑇) ∪ 𝑉)) → ((𝑆𝐹)‘⟨“𝑋”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
115, 10syld3an3 1368 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐴) → ((𝑆𝐹)‘⟨“𝑋”⟩) = if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩))
12 iftrue 4069 . . 3 (𝑋𝐴 → if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) = (𝐹𝑋))
13123ad2ant3 1082 . 2 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐴) → if(𝑋𝐴, (𝐹𝑋), ⟨“𝑋”⟩) = (𝐹𝑋))
1411, 13eqtrd 2655 1 ((𝐹:𝐴𝑅𝐴𝑉𝑋𝐴) → ((𝑆𝐹)‘⟨“𝑋”⟩) = (𝐹𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1036   = wceq 1480  wcel 1987  cun 3557  wss 3559  ifcif 4063  wf 5848  cfv 5852  ⟨“cs1 13241  mCNcmcn 31100  mVRcmvar 31101  mRExcmrex 31106  mRSubstcmrsub 31110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-n0 11245  df-z 11330  df-uz 11640  df-fz 12277  df-fzo 12415  df-seq 12750  df-hash 13066  df-word 13246  df-s1 13249  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-plusg 15886  df-0g 16034  df-gsum 16035  df-frmd 17318  df-mrex 31126  df-mrsub 31130
This theorem is referenced by:  mrsubff1  31154
  Copyright terms: Public domain W3C validator