![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcan1g | Structured version Visualization version GIF version |
Description: A generalized form of the cancellation law for multiplication. (Contributed by Scott Fenton, 17-Jun-2013.) |
Ref | Expression |
---|---|
mulcan1g | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 · 𝐶) ↔ (𝐴 = 0 ∨ 𝐵 = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulcl 10212 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | |
2 | 1 | 3adant3 1127 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
3 | mulcl 10212 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ) | |
4 | 3 | 3adant2 1126 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · 𝐶) ∈ ℂ) |
5 | 2, 4 | subeq0ad 10594 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 · 𝐵) − (𝐴 · 𝐶)) = 0 ↔ (𝐴 · 𝐵) = (𝐴 · 𝐶))) |
6 | simp1 1131 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ ℂ) | |
7 | subcl 10472 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 − 𝐶) ∈ ℂ) | |
8 | 7 | 3adant1 1125 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐵 − 𝐶) ∈ ℂ) |
9 | 6, 8 | mul0ord 10869 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · (𝐵 − 𝐶)) = 0 ↔ (𝐴 = 0 ∨ (𝐵 − 𝐶) = 0))) |
10 | subdi 10655 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 − 𝐶)) = ((𝐴 · 𝐵) − (𝐴 · 𝐶))) | |
11 | 10 | eqeq1d 2762 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · (𝐵 − 𝐶)) = 0 ↔ ((𝐴 · 𝐵) − (𝐴 · 𝐶)) = 0)) |
12 | subeq0 10499 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 − 𝐶) = 0 ↔ 𝐵 = 𝐶)) | |
13 | 12 | 3adant1 1125 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐵 − 𝐶) = 0 ↔ 𝐵 = 𝐶)) |
14 | 13 | orbi2d 740 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 = 0 ∨ (𝐵 − 𝐶) = 0) ↔ (𝐴 = 0 ∨ 𝐵 = 𝐶))) |
15 | 9, 11, 14 | 3bitr3d 298 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (((𝐴 · 𝐵) − (𝐴 · 𝐶)) = 0 ↔ (𝐴 = 0 ∨ 𝐵 = 𝐶))) |
16 | 5, 15 | bitr3d 270 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) = (𝐴 · 𝐶) ↔ (𝐴 = 0 ∨ 𝐵 = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 (class class class)co 6813 ℂcc 10126 0cc0 10128 · cmul 10133 − cmin 10458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 |
This theorem is referenced by: mulcan2g 10873 axcontlem2 26044 axcontlem7 26049 |
Copyright terms: Public domain | W3C validator |