MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgsubdi Structured version   Visualization version   GIF version

Theorem mulgsubdi 18950
Description: Group multiple of a difference. (Contributed by Mario Carneiro, 13-Dec-2014.)
Hypotheses
Ref Expression
mulgsubdi.b 𝐵 = (Base‘𝐺)
mulgsubdi.t · = (.g𝐺)
mulgsubdi.d = (-g𝐺)
Assertion
Ref Expression
mulgsubdi ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 𝑌)) = ((𝑀 · 𝑋) (𝑀 · 𝑌)))

Proof of Theorem mulgsubdi
StepHypRef Expression
1 simpl 485 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Abel)
2 simpr1 1190 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑀 ∈ ℤ)
3 simpr2 1191 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑋𝐵)
4 ablgrp 18911 . . . . . 6 (𝐺 ∈ Abel → 𝐺 ∈ Grp)
54adantr 483 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝐺 ∈ Grp)
6 simpr3 1192 . . . . 5 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → 𝑌𝐵)
7 mulgsubdi.b . . . . . 6 𝐵 = (Base‘𝐺)
8 eqid 2821 . . . . . 6 (invg𝐺) = (invg𝐺)
97, 8grpinvcl 18151 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → ((invg𝐺)‘𝑌) ∈ 𝐵)
105, 6, 9syl2anc 586 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((invg𝐺)‘𝑌) ∈ 𝐵)
11 mulgsubdi.t . . . . 5 · = (.g𝐺)
12 eqid 2821 . . . . 5 (+g𝐺) = (+g𝐺)
137, 11, 12mulgdi 18947 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵 ∧ ((invg𝐺)‘𝑌) ∈ 𝐵)) → (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)(𝑀 · ((invg𝐺)‘𝑌))))
141, 2, 3, 10, 13syl13anc 1368 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)(𝑀 · ((invg𝐺)‘𝑌))))
157, 11, 8mulginvcom 18252 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (𝑀 · ((invg𝐺)‘𝑌)) = ((invg𝐺)‘(𝑀 · 𝑌)))
165, 2, 6, 15syl3anc 1367 . . . 4 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · ((invg𝐺)‘𝑌)) = ((invg𝐺)‘(𝑀 · 𝑌)))
1716oveq2d 7172 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑀 · 𝑋)(+g𝐺)(𝑀 · ((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
1814, 17eqtrd 2856 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
19 mulgsubdi.d . . . . 5 = (-g𝐺)
207, 12, 8, 19grpsubval 18149 . . . 4 ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
213, 6, 20syl2anc 586 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2221oveq2d 7172 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 𝑌)) = (𝑀 · (𝑋(+g𝐺)((invg𝐺)‘𝑌))))
237, 11mulgcl 18245 . . . 4 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵) → (𝑀 · 𝑋) ∈ 𝐵)
245, 2, 3, 23syl3anc 1367 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑋) ∈ 𝐵)
257, 11mulgcl 18245 . . . 4 ((𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑌𝐵) → (𝑀 · 𝑌) ∈ 𝐵)
265, 2, 6, 25syl3anc 1367 . . 3 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · 𝑌) ∈ 𝐵)
277, 12, 8, 19grpsubval 18149 . . 3 (((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑌) ∈ 𝐵) → ((𝑀 · 𝑋) (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
2824, 26, 27syl2anc 586 . 2 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑀 · 𝑋) (𝑀 · 𝑌)) = ((𝑀 · 𝑋)(+g𝐺)((invg𝐺)‘(𝑀 · 𝑌))))
2918, 22, 283eqtr4d 2866 1 ((𝐺 ∈ Abel ∧ (𝑀 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → (𝑀 · (𝑋 𝑌)) = ((𝑀 · 𝑋) (𝑀 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  cz 11982  Basecbs 16483  +gcplusg 16565  Grpcgrp 18103  invgcminusg 18104  -gcsg 18105  .gcmg 18224  Abelcabl 18907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-0g 16715  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-cmn 18908  df-abl 18909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator