MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfsumw Structured version   Visualization version   GIF version

Theorem nfsumw 15047
Description: Bound-variable hypothesis builder for sum: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in Σ𝑘𝐴𝐵. Version of nfsum 15048 with a disjoint variable condition, which does not require ax-13 2390. (Contributed by NM, 11-Dec-2005.) (Revised by Gino Giotto, 24-Feb-2024.)
Hypotheses
Ref Expression
nfsumw.1 𝑥𝐴
nfsumw.2 𝑥𝐵
Assertion
Ref Expression
nfsumw 𝑥Σ𝑘𝐴 𝐵
Distinct variable group:   𝑥,𝑘
Allowed substitution hints:   𝐴(𝑥,𝑘)   𝐵(𝑥,𝑘)

Proof of Theorem nfsumw
Dummy variables 𝑓 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sum 15043 . 2 Σ𝑘𝐴 𝐵 = (℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
2 nfcv 2977 . . . . 5 𝑥
3 nfsumw.1 . . . . . . 7 𝑥𝐴
4 nfcv 2977 . . . . . . 7 𝑥(ℤ𝑚)
53, 4nfss 3960 . . . . . 6 𝑥 𝐴 ⊆ (ℤ𝑚)
6 nfcv 2977 . . . . . . . 8 𝑥𝑚
7 nfcv 2977 . . . . . . . 8 𝑥 +
83nfcri 2971 . . . . . . . . . 10 𝑥 𝑛𝐴
9 nfcv 2977 . . . . . . . . . . 11 𝑥𝑛
10 nfsumw.2 . . . . . . . . . . 11 𝑥𝐵
119, 10nfcsbw 3909 . . . . . . . . . 10 𝑥𝑛 / 𝑘𝐵
12 nfcv 2977 . . . . . . . . . 10 𝑥0
138, 11, 12nfif 4496 . . . . . . . . 9 𝑥if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)
142, 13nfmpt 5163 . . . . . . . 8 𝑥(𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))
156, 7, 14nfseq 13380 . . . . . . 7 𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0)))
16 nfcv 2977 . . . . . . 7 𝑥
17 nfcv 2977 . . . . . . 7 𝑥𝑧
1815, 16, 17nfbr 5113 . . . . . 6 𝑥seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧
195, 18nfan 1900 . . . . 5 𝑥(𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧)
202, 19nfrex 3309 . . . 4 𝑥𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧)
21 nfcv 2977 . . . . 5 𝑥
22 nfcv 2977 . . . . . . . 8 𝑥𝑓
23 nfcv 2977 . . . . . . . 8 𝑥(1...𝑚)
2422, 23, 3nff1o 6613 . . . . . . 7 𝑥 𝑓:(1...𝑚)–1-1-onto𝐴
25 nfcv 2977 . . . . . . . . . 10 𝑥1
26 nfcv 2977 . . . . . . . . . . . 12 𝑥(𝑓𝑛)
2726, 10nfcsbw 3909 . . . . . . . . . . 11 𝑥(𝑓𝑛) / 𝑘𝐵
2821, 27nfmpt 5163 . . . . . . . . . 10 𝑥(𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵)
2925, 7, 28nfseq 13380 . . . . . . . . 9 𝑥seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))
3029, 6nffv 6680 . . . . . . . 8 𝑥(seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3130nfeq2 2995 . . . . . . 7 𝑥 𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)
3224, 31nfan 1900 . . . . . 6 𝑥(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3332nfex 2343 . . . . 5 𝑥𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3421, 33nfrex 3309 . . . 4 𝑥𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
3520, 34nfor 1905 . . 3 𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
3635nfiotaw 6318 . 2 𝑥(℩𝑧(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑧) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑧 = (seq1( + , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
371, 36nfcxfr 2975 1 𝑥Σ𝑘𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 398  wo 843   = wceq 1537  wex 1780  wcel 2114  wnfc 2961  wrex 3139  csb 3883  wss 3936  ifcif 4467   class class class wbr 5066  cmpt 5146  cio 6312  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538   + caddc 10540  cn 11638  cz 11982  cuz 12244  ...cfz 12893  seqcseq 13370  cli 14841  Σcsu 15042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-seq 13371  df-sum 15043
This theorem is referenced by:  fsum2dlem  15125  fsumcom2  15129  fsumrlim  15166  fsumiun  15176  fsumcn  23478  fsum2cn  23479  nfitg1  24374  nfitg  24375  dvmptfsum  24572  fsumdvdscom  25762  binomcxplemdvsum  40736  binomcxplemnotnn0  40737  fsumcnf  41327  fsumiunss  41905  dvmptfprod  42279  sge0iunmptlemre  42746
  Copyright terms: Public domain W3C validator