Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0indd Structured version   Visualization version   GIF version

Theorem nn0indd 11666
 Description: Principle of Mathematical Induction (inference schema) on nonnegative integers, a deduction version. (Contributed by Thierry Arnoux, 23-Mar-2018.)
Hypotheses
Ref Expression
nn0indd.1 (𝑥 = 0 → (𝜓𝜒))
nn0indd.2 (𝑥 = 𝑦 → (𝜓𝜃))
nn0indd.3 (𝑥 = (𝑦 + 1) → (𝜓𝜏))
nn0indd.4 (𝑥 = 𝐴 → (𝜓𝜂))
nn0indd.5 (𝜑𝜒)
nn0indd.6 (((𝜑𝑦 ∈ ℕ0) ∧ 𝜃) → 𝜏)
Assertion
Ref Expression
nn0indd ((𝜑𝐴 ∈ ℕ0) → 𝜂)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝜑   𝜓,𝑦   𝜒,𝑥   𝜂,𝑥   𝜃,𝑥   𝜏,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝜂(𝑦)   𝐴(𝑦)

Proof of Theorem nn0indd
StepHypRef Expression
1 nn0indd.1 . . . 4 (𝑥 = 0 → (𝜓𝜒))
21imbi2d 329 . . 3 (𝑥 = 0 → ((𝜑𝜓) ↔ (𝜑𝜒)))
3 nn0indd.2 . . . 4 (𝑥 = 𝑦 → (𝜓𝜃))
43imbi2d 329 . . 3 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ (𝜑𝜃)))
5 nn0indd.3 . . . 4 (𝑥 = (𝑦 + 1) → (𝜓𝜏))
65imbi2d 329 . . 3 (𝑥 = (𝑦 + 1) → ((𝜑𝜓) ↔ (𝜑𝜏)))
7 nn0indd.4 . . . 4 (𝑥 = 𝐴 → (𝜓𝜂))
87imbi2d 329 . . 3 (𝑥 = 𝐴 → ((𝜑𝜓) ↔ (𝜑𝜂)))
9 nn0indd.5 . . 3 (𝜑𝜒)
10 nn0indd.6 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ 𝜃) → 𝜏)
1110ex 449 . . . . 5 ((𝜑𝑦 ∈ ℕ0) → (𝜃𝜏))
1211expcom 450 . . . 4 (𝑦 ∈ ℕ0 → (𝜑 → (𝜃𝜏)))
1312a2d 29 . . 3 (𝑦 ∈ ℕ0 → ((𝜑𝜃) → (𝜑𝜏)))
142, 4, 6, 8, 9, 13nn0ind 11664 . 2 (𝐴 ∈ ℕ0 → (𝜑𝜂))
1514impcom 445 1 ((𝜑𝐴 ∈ ℕ0) → 𝜂)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  (class class class)co 6813  0cc0 10128  1c1 10129   + caddc 10131  ℕ0cn0 11484 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570 This theorem is referenced by:  omndmul2  30021  omndmul  30023  breprexp  31020  dvnxpaek  40660
 Copyright terms: Public domain W3C validator