MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  faclbnd6 Structured version   Visualization version   GIF version

Theorem faclbnd6 12903
Description: Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007.)
Assertion
Ref Expression
faclbnd6 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀)))

Proof of Theorem faclbnd6
Dummy variables 𝑚 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6535 . . . . . 6 (𝑚 = 0 → ((𝑁 + 1)↑𝑚) = ((𝑁 + 1)↑0))
21oveq2d 6543 . . . . 5 (𝑚 = 0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) = ((!‘𝑁) · ((𝑁 + 1)↑0)))
3 oveq2 6535 . . . . . 6 (𝑚 = 0 → (𝑁 + 𝑚) = (𝑁 + 0))
43fveq2d 6092 . . . . 5 (𝑚 = 0 → (!‘(𝑁 + 𝑚)) = (!‘(𝑁 + 0)))
52, 4breq12d 4590 . . . 4 (𝑚 = 0 → (((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚)) ↔ ((!‘𝑁) · ((𝑁 + 1)↑0)) ≤ (!‘(𝑁 + 0))))
65imbi2d 328 . . 3 (𝑚 = 0 → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚))) ↔ (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑0)) ≤ (!‘(𝑁 + 0)))))
7 oveq2 6535 . . . . . 6 (𝑚 = 𝑘 → ((𝑁 + 1)↑𝑚) = ((𝑁 + 1)↑𝑘))
87oveq2d 6543 . . . . 5 (𝑚 = 𝑘 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) = ((!‘𝑁) · ((𝑁 + 1)↑𝑘)))
9 oveq2 6535 . . . . . 6 (𝑚 = 𝑘 → (𝑁 + 𝑚) = (𝑁 + 𝑘))
109fveq2d 6092 . . . . 5 (𝑚 = 𝑘 → (!‘(𝑁 + 𝑚)) = (!‘(𝑁 + 𝑘)))
118, 10breq12d 4590 . . . 4 (𝑚 = 𝑘 → (((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚)) ↔ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))))
1211imbi2d 328 . . 3 (𝑚 = 𝑘 → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚))) ↔ (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)))))
13 oveq2 6535 . . . . . 6 (𝑚 = (𝑘 + 1) → ((𝑁 + 1)↑𝑚) = ((𝑁 + 1)↑(𝑘 + 1)))
1413oveq2d 6543 . . . . 5 (𝑚 = (𝑘 + 1) → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) = ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))))
15 oveq2 6535 . . . . . 6 (𝑚 = (𝑘 + 1) → (𝑁 + 𝑚) = (𝑁 + (𝑘 + 1)))
1615fveq2d 6092 . . . . 5 (𝑚 = (𝑘 + 1) → (!‘(𝑁 + 𝑚)) = (!‘(𝑁 + (𝑘 + 1))))
1714, 16breq12d 4590 . . . 4 (𝑚 = (𝑘 + 1) → (((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚)) ↔ ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1)))))
1817imbi2d 328 . . 3 (𝑚 = (𝑘 + 1) → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚))) ↔ (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1))))))
19 oveq2 6535 . . . . . 6 (𝑚 = 𝑀 → ((𝑁 + 1)↑𝑚) = ((𝑁 + 1)↑𝑀))
2019oveq2d 6543 . . . . 5 (𝑚 = 𝑀 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) = ((!‘𝑁) · ((𝑁 + 1)↑𝑀)))
21 oveq2 6535 . . . . . 6 (𝑚 = 𝑀 → (𝑁 + 𝑚) = (𝑁 + 𝑀))
2221fveq2d 6092 . . . . 5 (𝑚 = 𝑀 → (!‘(𝑁 + 𝑚)) = (!‘(𝑁 + 𝑀)))
2320, 22breq12d 4590 . . . 4 (𝑚 = 𝑀 → (((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚)) ↔ ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀))))
2423imbi2d 328 . . 3 (𝑚 = 𝑀 → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑚)) ≤ (!‘(𝑁 + 𝑚))) ↔ (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀)))))
25 faccl 12887 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℕ)
2625nnred 10882 . . . . 5 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℝ)
2726leidd 10443 . . . 4 (𝑁 ∈ ℕ0 → (!‘𝑁) ≤ (!‘𝑁))
28 nn0cn 11149 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
29 peano2cn 10059 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 + 1) ∈ ℂ)
3028, 29syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
3130exp0d 12819 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1)↑0) = 1)
3231oveq2d 6543 . . . . 5 (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑0)) = ((!‘𝑁) · 1))
3325nncnd 10883 . . . . . 6 (𝑁 ∈ ℕ0 → (!‘𝑁) ∈ ℂ)
3433mulid1d 9913 . . . . 5 (𝑁 ∈ ℕ0 → ((!‘𝑁) · 1) = (!‘𝑁))
3532, 34eqtrd 2643 . . . 4 (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑0)) = (!‘𝑁))
3628addid1d 10087 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 0) = 𝑁)
3736fveq2d 6092 . . . 4 (𝑁 ∈ ℕ0 → (!‘(𝑁 + 0)) = (!‘𝑁))
3827, 35, 373brtr4d 4609 . . 3 (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑0)) ≤ (!‘(𝑁 + 0)))
3926adantr 479 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑁) ∈ ℝ)
40 peano2nn0 11180 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
4140nn0red 11199 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℝ)
42 reexpcl 12694 . . . . . . . . . . . . 13 (((𝑁 + 1) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((𝑁 + 1)↑𝑘) ∈ ℝ)
4341, 42sylan 486 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1)↑𝑘) ∈ ℝ)
4439, 43remulcld 9926 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ)
45 nnnn0 11146 . . . . . . . . . . . . . . 15 ((!‘𝑁) ∈ ℕ → (!‘𝑁) ∈ ℕ0)
4645nn0ge0d 11201 . . . . . . . . . . . . . 14 ((!‘𝑁) ∈ ℕ → 0 ≤ (!‘𝑁))
4725, 46syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → 0 ≤ (!‘𝑁))
4847adantr 479 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ (!‘𝑁))
4941adantr 479 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ∈ ℝ)
50 simpr 475 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
5140nn0ge0d 11201 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → 0 ≤ (𝑁 + 1))
5251adantr 479 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ (𝑁 + 1))
5349, 50, 52expge0d 12843 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ ((𝑁 + 1)↑𝑘))
5439, 43, 48, 53mulge0d 10453 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)))
5544, 54jca 552 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ ∧ 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘))))
56 nn0addcl 11175 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 𝑘) ∈ ℕ0)
57 faccl 12887 . . . . . . . . . . . 12 ((𝑁 + 𝑘) ∈ ℕ0 → (!‘(𝑁 + 𝑘)) ∈ ℕ)
5856, 57syl 17 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑁 + 𝑘)) ∈ ℕ)
5958nnred 10882 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑁 + 𝑘)) ∈ ℝ)
60 nn0re 11148 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
61 peano2nn0 11180 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
6261nn0red 11199 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℝ)
63 readdcl 9875 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ (𝑘 + 1) ∈ ℝ) → (𝑁 + (𝑘 + 1)) ∈ ℝ)
6460, 62, 63syl2an 492 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + (𝑘 + 1)) ∈ ℝ)
6549, 52, 64jca31 554 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (𝑁 + (𝑘 + 1)) ∈ ℝ))
6655, 59, 65jca31 554 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ ∧ 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘))) ∧ (!‘(𝑁 + 𝑘)) ∈ ℝ) ∧ (((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (𝑁 + (𝑘 + 1)) ∈ ℝ)))
6766adantr 479 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (((((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ ∧ 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘))) ∧ (!‘(𝑁 + 𝑘)) ∈ ℝ) ∧ (((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (𝑁 + (𝑘 + 1)) ∈ ℝ)))
68 simpr 475 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)))
6936adantr 479 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 0) = 𝑁)
70 nn0ge0 11165 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ0 → 0 ≤ 𝑘)
7170adantl 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 0 ≤ 𝑘)
72 nn0re 11148 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
7372adantl 480 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
7460adantr 479 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑁 ∈ ℝ)
75 0re 9896 . . . . . . . . . . . . . . . 16 0 ∈ ℝ
76 leadd2 10346 . . . . . . . . . . . . . . . 16 ((0 ∈ ℝ ∧ 𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑘 ↔ (𝑁 + 0) ≤ (𝑁 + 𝑘)))
7775, 76mp3an1 1402 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ 𝑘 ↔ (𝑁 + 0) ≤ (𝑁 + 𝑘)))
7873, 74, 77syl2anc 690 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (0 ≤ 𝑘 ↔ (𝑁 + 0) ≤ (𝑁 + 𝑘)))
7971, 78mpbid 220 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 0) ≤ (𝑁 + 𝑘))
8069, 79eqbrtrrd 4601 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → 𝑁 ≤ (𝑁 + 𝑘))
8156nn0red 11199 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 𝑘) ∈ ℝ)
82 1re 9895 . . . . . . . . . . . . . 14 1 ∈ ℝ
83 leadd1 10345 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ (𝑁 + 𝑘) ∈ ℝ ∧ 1 ∈ ℝ) → (𝑁 ≤ (𝑁 + 𝑘) ↔ (𝑁 + 1) ≤ ((𝑁 + 𝑘) + 1)))
8482, 83mp3an3 1404 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ (𝑁 + 𝑘) ∈ ℝ) → (𝑁 ≤ (𝑁 + 𝑘) ↔ (𝑁 + 1) ≤ ((𝑁 + 𝑘) + 1)))
8574, 81, 84syl2anc 690 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 ≤ (𝑁 + 𝑘) ↔ (𝑁 + 1) ≤ ((𝑁 + 𝑘) + 1)))
8680, 85mpbid 220 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ≤ ((𝑁 + 𝑘) + 1))
87 nn0cn 11149 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
88 ax-1cn 9850 . . . . . . . . . . . . 13 1 ∈ ℂ
89 addass 9879 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
9088, 89mp3an3 1404 . . . . . . . . . . . 12 ((𝑁 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
9128, 87, 90syl2an 492 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 𝑘) + 1) = (𝑁 + (𝑘 + 1)))
9286, 91breqtrd 4603 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ≤ (𝑁 + (𝑘 + 1)))
9392adantr 479 . . . . . . . . 9 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (𝑁 + 1) ≤ (𝑁 + (𝑘 + 1)))
9468, 93jca 552 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)) ∧ (𝑁 + 1) ≤ (𝑁 + (𝑘 + 1))))
95 lemul12a 10730 . . . . . . . 8 ((((((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ∈ ℝ ∧ 0 ≤ ((!‘𝑁) · ((𝑁 + 1)↑𝑘))) ∧ (!‘(𝑁 + 𝑘)) ∈ ℝ) ∧ (((𝑁 + 1) ∈ ℝ ∧ 0 ≤ (𝑁 + 1)) ∧ (𝑁 + (𝑘 + 1)) ∈ ℝ)) → ((((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)) ∧ (𝑁 + 1) ≤ (𝑁 + (𝑘 + 1))) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)) ≤ ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1)))))
9667, 94, 95sylc 62 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)) ≤ ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1))))
97 expp1 12684 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑁 + 1)↑(𝑘 + 1)) = (((𝑁 + 1)↑𝑘) · (𝑁 + 1)))
9830, 97sylan 486 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1)↑(𝑘 + 1)) = (((𝑁 + 1)↑𝑘) · (𝑁 + 1)))
9998oveq2d 6543 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) = ((!‘𝑁) · (((𝑁 + 1)↑𝑘) · (𝑁 + 1))))
10033adantr 479 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘𝑁) ∈ ℂ)
101 expcl 12695 . . . . . . . . . . 11 (((𝑁 + 1) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝑁 + 1)↑𝑘) ∈ ℂ)
10230, 101sylan 486 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((𝑁 + 1)↑𝑘) ∈ ℂ)
10330adantr 479 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (𝑁 + 1) ∈ ℂ)
104100, 102, 103mulassd 9919 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)) = ((!‘𝑁) · (((𝑁 + 1)↑𝑘) · (𝑁 + 1))))
10599, 104eqtr4d 2646 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) = (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)))
106105adantr 479 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) = (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) · (𝑁 + 1)))
107 facp1 12882 . . . . . . . . . 10 ((𝑁 + 𝑘) ∈ ℕ0 → (!‘((𝑁 + 𝑘) + 1)) = ((!‘(𝑁 + 𝑘)) · ((𝑁 + 𝑘) + 1)))
10856, 107syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘((𝑁 + 𝑘) + 1)) = ((!‘(𝑁 + 𝑘)) · ((𝑁 + 𝑘) + 1)))
10991fveq2d 6092 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘((𝑁 + 𝑘) + 1)) = (!‘(𝑁 + (𝑘 + 1))))
11091oveq2d 6543 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → ((!‘(𝑁 + 𝑘)) · ((𝑁 + 𝑘) + 1)) = ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1))))
111108, 109, 1103eqtr3d 2651 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (!‘(𝑁 + (𝑘 + 1))) = ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1))))
112111adantr 479 . . . . . . 7 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (!‘(𝑁 + (𝑘 + 1))) = ((!‘(𝑁 + 𝑘)) · (𝑁 + (𝑘 + 1))))
11396, 106, 1123brtr4d 4609 . . . . . 6 (((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) ∧ ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1))))
114113ex 448 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ ℕ0) → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1)))))
115114expcom 449 . . . 4 (𝑘 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘)) → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1))))))
116115a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑘)) ≤ (!‘(𝑁 + 𝑘))) → (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑(𝑘 + 1))) ≤ (!‘(𝑁 + (𝑘 + 1))))))
1176, 12, 18, 24, 38, 116nn0ind 11304 . 2 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀))))
118117impcom 444 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0) → ((!‘𝑁) · ((𝑁 + 1)↑𝑀)) ≤ (!‘(𝑁 + 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wcel 1976   class class class wbr 4577  cfv 5790  (class class class)co 6527  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  cle 9931  cn 10867  0cn0 11139  cexp 12677  !cfa 12877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-er 7606  df-en 7819  df-dom 7820  df-sdom 7821  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-n0 11140  df-z 11211  df-uz 11520  df-seq 12619  df-exp 12678  df-fac 12878
This theorem is referenced by:  eftlub  14624
  Copyright terms: Public domain W3C validator