Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0xmulclb Structured version   Visualization version   GIF version

Theorem nn0xmulclb 30496
Description: Finite multiplication in the extended nonnegative integers. (Contributed by Thierry Arnoux, 30-Jul-2023.)
Assertion
Ref Expression
nn0xmulclb (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 ·e 𝐵) ∈ ℕ0 ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)))

Proof of Theorem nn0xmulclb
StepHypRef Expression
1 simplr 767 . . 3 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 ·e 𝐵) ∈ ℕ0)
2 simpr 487 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐴 = +∞)
32oveq1d 7171 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → (𝐴 ·e 𝐵) = (+∞ ·e 𝐵))
4 xnn0xr 11973 . . . . . . . 8 (𝐵 ∈ ℕ0*𝐵 ∈ ℝ*)
54ad5antlr 733 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐵 ∈ ℝ*)
6 simp-5r 784 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐵 ∈ ℕ0*)
7 simprr 771 . . . . . . . . 9 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐵 ≠ 0)
87ad3antrrr 728 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 𝐵 ≠ 0)
9 xnn0gt0 30494 . . . . . . . 8 ((𝐵 ∈ ℕ0*𝐵 ≠ 0) → 0 < 𝐵)
106, 8, 9syl2anc 586 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → 0 < 𝐵)
11 xmulpnf2 12669 . . . . . . 7 ((𝐵 ∈ ℝ* ∧ 0 < 𝐵) → (+∞ ·e 𝐵) = +∞)
125, 10, 11syl2anc 586 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → (+∞ ·e 𝐵) = +∞)
13 pnfnre2 10683 . . . . . . . 8 ¬ +∞ ∈ ℝ
14 nn0re 11907 . . . . . . . 8 (+∞ ∈ ℕ0 → +∞ ∈ ℝ)
1513, 14mto 199 . . . . . . 7 ¬ +∞ ∈ ℕ0
1615a1i 11 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → ¬ +∞ ∈ ℕ0)
1712, 16eqneltrd 2932 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → ¬ (+∞ ·e 𝐵) ∈ ℕ0)
183, 17eqneltrd 2932 . . . 4 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐴 = +∞) → ¬ (𝐴 ·e 𝐵) ∈ ℕ0)
19 simpr 487 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐵 = +∞)
2019oveq2d 7172 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → (𝐴 ·e 𝐵) = (𝐴 ·e +∞))
21 xnn0xr 11973 . . . . . . . 8 (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
2221ad5antr 732 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ*)
23 simp-5l 783 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐴 ∈ ℕ0*)
24 simprl 769 . . . . . . . . 9 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → 𝐴 ≠ 0)
2524ad3antrrr 728 . . . . . . . 8 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 𝐴 ≠ 0)
26 xnn0gt0 30494 . . . . . . . 8 ((𝐴 ∈ ℕ0*𝐴 ≠ 0) → 0 < 𝐴)
2723, 25, 26syl2anc 586 . . . . . . 7 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → 0 < 𝐴)
28 xmulpnf1 12668 . . . . . . 7 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (𝐴 ·e +∞) = +∞)
2922, 27, 28syl2anc 586 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → (𝐴 ·e +∞) = +∞)
3015a1i 11 . . . . . 6 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → ¬ +∞ ∈ ℕ0)
3129, 30eqneltrd 2932 . . . . 5 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → ¬ (𝐴 ·e +∞) ∈ ℕ0)
3220, 31eqneltrd 2932 . . . 4 ((((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) ∧ 𝐵 = +∞) → ¬ (𝐴 ·e 𝐵) ∈ ℕ0)
33 xnn0nnn0pnf 11981 . . . . . . . 8 ((𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0) → 𝐴 = +∞)
3433ad5ant15 757 . . . . . . 7 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ 𝐴 ∈ ℕ0) → 𝐴 = +∞)
3534ex 415 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → (¬ 𝐴 ∈ ℕ0𝐴 = +∞))
36 xnn0nnn0pnf 11981 . . . . . . . 8 ((𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0) → 𝐵 = +∞)
3736ad5ant25 760 . . . . . . 7 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ 𝐵 ∈ ℕ0) → 𝐵 = +∞)
3837ex 415 . . . . . 6 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → (¬ 𝐵 ∈ ℕ0𝐵 = +∞))
3935, 38orim12d 961 . . . . 5 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → ((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) → (𝐴 = +∞ ∨ 𝐵 = +∞)))
40 pm3.13 991 . . . . 5 (¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0))
4139, 40impel 508 . . . 4 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 = +∞ ∨ 𝐵 = +∞))
4218, 32, 41mpjaodan 955 . . 3 (((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) ∧ ¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → ¬ (𝐴 ·e 𝐵) ∈ ℕ0)
431, 42condan 816 . 2 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ·e 𝐵) ∈ ℕ0) → (𝐴 ∈ ℕ0𝐵 ∈ ℕ0))
44 nn0re 11907 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4544ad2antrl 726 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → 𝐴 ∈ ℝ)
46 nn0re 11907 . . . . 5 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
4746ad2antll 727 . . . 4 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → 𝐵 ∈ ℝ)
48 rexmul 12665 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
4945, 47, 48syl2anc 586 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 ·e 𝐵) = (𝐴 · 𝐵))
50 nn0mulcl 11934 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 · 𝐵) ∈ ℕ0)
5150adantl 484 . . 3 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 · 𝐵) ∈ ℕ0)
5249, 51eqeltrd 2913 . 2 ((((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) ∧ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)) → (𝐴 ·e 𝐵) ∈ ℕ0)
5343, 52impbida 799 1 (((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) ∧ (𝐴 ≠ 0 ∧ 𝐵 ≠ 0)) → ((𝐴 ·e 𝐵) ∈ ℕ0 ↔ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  (class class class)co 7156  cr 10536  0cc0 10537   · cmul 10542  +∞cpnf 10672  *cxr 10674   < clt 10675  0cn0 11898  0*cxnn0 11968   ·e cxmu 12507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-xnn0 11969  df-xmul 12510
This theorem is referenced by:  finexttrb  31052
  Copyright terms: Public domain W3C validator