MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvnd Structured version   Visualization version   GIF version

Theorem nvnd 28463
Description: The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvnd.1 𝑋 = (BaseSet‘𝑈)
nvnd.5 𝑍 = (0vec𝑈)
nvnd.6 𝑁 = (normCV𝑈)
nvnd.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
nvnd ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐷𝑍))

Proof of Theorem nvnd
StepHypRef Expression
1 nvnd.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 nvnd.5 . . . . 5 𝑍 = (0vec𝑈)
31, 2nvzcl 28409 . . . 4 (𝑈 ∈ NrmCVec → 𝑍𝑋)
43adantr 483 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 𝑍𝑋)
5 eqid 2820 . . . 4 ( −𝑣𝑈) = ( −𝑣𝑈)
6 nvnd.6 . . . 4 𝑁 = (normCV𝑈)
7 nvnd.8 . . . 4 𝐷 = (IndMet‘𝑈)
81, 5, 6, 7imsdval 28461 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (𝐴𝐷𝑍) = (𝑁‘(𝐴( −𝑣𝑈)𝑍)))
94, 8mpd3an3 1457 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐷𝑍) = (𝑁‘(𝐴( −𝑣𝑈)𝑍)))
10 eqid 2820 . . . . . 6 ( +𝑣𝑈) = ( +𝑣𝑈)
11 eqid 2820 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
121, 10, 11, 5nvmval 28417 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (𝐴( −𝑣𝑈)𝑍) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))
134, 12mpd3an3 1457 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( −𝑣𝑈)𝑍) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))
14 neg1cn 11745 . . . . . . 7 -1 ∈ ℂ
1511, 2nvsz 28413 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ) → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1614, 15mpan2 689 . . . . . 6 (𝑈 ∈ NrmCVec → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1716oveq2d 7165 . . . . 5 (𝑈 ∈ NrmCVec → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)) = (𝐴( +𝑣𝑈)𝑍))
1817adantr 483 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)) = (𝐴( +𝑣𝑈)𝑍))
191, 10, 2nv0rid 28410 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)𝑍) = 𝐴)
2013, 18, 193eqtrd 2859 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( −𝑣𝑈)𝑍) = 𝐴)
2120fveq2d 6667 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( −𝑣𝑈)𝑍)) = (𝑁𝐴))
229, 21eqtr2d 2856 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐷𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  cfv 6348  (class class class)co 7149  cc 10528  1c1 10531  -cneg 10864  NrmCVeccnv 28359   +𝑣 cpv 28360  BaseSetcba 28361   ·𝑠OLD cns 28362  0veccn0v 28363  𝑣 cnsb 28364  normCVcnmcv 28365  IndMetcims 28366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7682  df-2nd 7683  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-pnf 10670  df-mnf 10671  df-ltxr 10673  df-sub 10865  df-neg 10866  df-grpo 28268  df-gid 28269  df-ginv 28270  df-gdiv 28271  df-ablo 28320  df-vc 28334  df-nv 28367  df-va 28370  df-ba 28371  df-sm 28372  df-0v 28373  df-vs 28374  df-nmcv 28375  df-ims 28376
This theorem is referenced by:  ubthlem1  28645
  Copyright terms: Public domain W3C validator