MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvnd Structured version   Visualization version   GIF version

Theorem nvnd 27431
Description: The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvnd.1 𝑋 = (BaseSet‘𝑈)
nvnd.5 𝑍 = (0vec𝑈)
nvnd.6 𝑁 = (normCV𝑈)
nvnd.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
nvnd ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐷𝑍))

Proof of Theorem nvnd
StepHypRef Expression
1 nvnd.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 nvnd.5 . . . . 5 𝑍 = (0vec𝑈)
31, 2nvzcl 27377 . . . 4 (𝑈 ∈ NrmCVec → 𝑍𝑋)
43adantr 481 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 𝑍𝑋)
5 eqid 2621 . . . 4 ( −𝑣𝑈) = ( −𝑣𝑈)
6 nvnd.6 . . . 4 𝑁 = (normCV𝑈)
7 nvnd.8 . . . 4 𝐷 = (IndMet‘𝑈)
81, 5, 6, 7imsdval 27429 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (𝐴𝐷𝑍) = (𝑁‘(𝐴( −𝑣𝑈)𝑍)))
94, 8mpd3an3 1422 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐷𝑍) = (𝑁‘(𝐴( −𝑣𝑈)𝑍)))
10 eqid 2621 . . . . . 6 ( +𝑣𝑈) = ( +𝑣𝑈)
11 eqid 2621 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
121, 10, 11, 5nvmval 27385 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (𝐴( −𝑣𝑈)𝑍) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))
134, 12mpd3an3 1422 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( −𝑣𝑈)𝑍) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))
14 neg1cn 11084 . . . . . . 7 -1 ∈ ℂ
1511, 2nvsz 27381 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ) → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1614, 15mpan2 706 . . . . . 6 (𝑈 ∈ NrmCVec → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1716oveq2d 6631 . . . . 5 (𝑈 ∈ NrmCVec → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)) = (𝐴( +𝑣𝑈)𝑍))
1817adantr 481 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)) = (𝐴( +𝑣𝑈)𝑍))
191, 10, 2nv0rid 27378 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)𝑍) = 𝐴)
2013, 18, 193eqtrd 2659 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( −𝑣𝑈)𝑍) = 𝐴)
2120fveq2d 6162 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( −𝑣𝑈)𝑍)) = (𝑁𝐴))
229, 21eqtr2d 2656 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐷𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cfv 5857  (class class class)co 6615  cc 9894  1c1 9897  -cneg 10227  NrmCVeccnv 27327   +𝑣 cpv 27328  BaseSetcba 27329   ·𝑠OLD cns 27330  0veccn0v 27331  𝑣 cnsb 27332  normCVcnmcv 27333  IndMetcims 27334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-ltxr 10039  df-sub 10228  df-neg 10229  df-grpo 27235  df-gid 27236  df-ginv 27237  df-gdiv 27238  df-ablo 27287  df-vc 27302  df-nv 27335  df-va 27338  df-ba 27339  df-sm 27340  df-0v 27341  df-vs 27342  df-nmcv 27343  df-ims 27344
This theorem is referenced by:  ubthlem1  27614
  Copyright terms: Public domain W3C validator