Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  oddm1even Structured version   Visualization version   GIF version

Theorem oddm1even 15269
 Description: An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
Assertion
Ref Expression
oddm1even (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))

Proof of Theorem oddm1even
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 simpl 474 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℤ)
21zcnd 11675 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑁 ∈ ℂ)
3 1cnd 10248 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 1 ∈ ℂ)
4 2cnd 11285 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 2 ∈ ℂ)
5 simpr 479 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℤ)
65zcnd 11675 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → 𝑛 ∈ ℂ)
74, 6mulcld 10252 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℂ)
82, 3, 7subadd2d 10603 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑁 − 1) = (2 · 𝑛) ↔ ((2 · 𝑛) + 1) = 𝑁))
9 eqcom 2767 . . . . 5 ((𝑁 − 1) = (2 · 𝑛) ↔ (2 · 𝑛) = (𝑁 − 1))
104, 6mulcomd 10253 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) = (𝑛 · 2))
1110eqeq1d 2762 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((2 · 𝑛) = (𝑁 − 1) ↔ (𝑛 · 2) = (𝑁 − 1)))
129, 11syl5bb 272 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑁 − 1) = (2 · 𝑛) ↔ (𝑛 · 2) = (𝑁 − 1)))
138, 12bitr3d 270 . . 3 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 ↔ (𝑛 · 2) = (𝑁 − 1)))
1413rexbidva 3187 . 2 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = (𝑁 − 1)))
15 odd2np1 15267 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
16 2z 11601 . . 3 2 ∈ ℤ
17 peano2zm 11612 . . 3 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
18 divides 15184 . . 3 ((2 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) → (2 ∥ (𝑁 − 1) ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = (𝑁 − 1)))
1916, 17, 18sylancr 698 . 2 (𝑁 ∈ ℤ → (2 ∥ (𝑁 − 1) ↔ ∃𝑛 ∈ ℤ (𝑛 · 2) = (𝑁 − 1)))
2014, 15, 193bitr4d 300 1 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∃wrex 3051   class class class wbr 4804  (class class class)co 6813  1c1 10129   + caddc 10131   · cmul 10133   − cmin 10458  2c2 11262  ℤcz 11569   ∥ cdvds 15182 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-n0 11485  df-z 11570  df-dvds 15183 This theorem is referenced by:  oddp1even  15270  n2dvds3  15309  oddpwp1fsum  15317  bitscmp  15362  lighneallem1  42032  lighneallem3  42034  2dvdsoddm1  42079
 Copyright terms: Public domain W3C validator