Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  odd2np1 Structured version   Visualization version   GIF version

Theorem odd2np1 15000
 Description: An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
odd2np1 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
Distinct variable group:   𝑛,𝑁

Proof of Theorem odd2np1
Dummy variables 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2z 11361 . . . 4 2 ∈ ℤ
2 divides 14920 . . . 4 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
31, 2mpan 705 . . 3 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
43notbid 308 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
5 elznn0 11344 . . . 4 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
6 odd2np1lem 14999 . . . . . 6 (𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
76adantl 482 . . . . 5 ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
8 odd2np1lem 14999 . . . . . . 7 (-𝑁 ∈ ℕ0 → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = -𝑁 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = -𝑁))
9 peano2z 11370 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℤ)
10 znegcl 11364 . . . . . . . . . . . . 13 ((𝑥 + 1) ∈ ℤ → -(𝑥 + 1) ∈ ℤ)
119, 10syl 17 . . . . . . . . . . . 12 (𝑥 ∈ ℤ → -(𝑥 + 1) ∈ ℤ)
1211ad2antlr 762 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) ∧ ((2 · 𝑥) + 1) = -𝑁) → -(𝑥 + 1) ∈ ℤ)
13 zcn 11334 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
14 2cn 11043 . . . . . . . . . . . . . . . . . 18 2 ∈ ℂ
15 mulcl 9972 . . . . . . . . . . . . . . . . . 18 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ ℂ)
1614, 15mpan 705 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℂ → (2 · 𝑥) ∈ ℂ)
17 peano2cn 10160 . . . . . . . . . . . . . . . . 17 ((2 · 𝑥) ∈ ℂ → ((2 · 𝑥) + 1) ∈ ℂ)
1816, 17syl 17 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℂ → ((2 · 𝑥) + 1) ∈ ℂ)
1913, 18syl 17 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → ((2 · 𝑥) + 1) ∈ ℂ)
2019adantl 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → ((2 · 𝑥) + 1) ∈ ℂ)
21 simpl 473 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℝ)
2221recnd 10020 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → 𝑁 ∈ ℂ)
23 negcon2 10286 . . . . . . . . . . . . . 14 ((((2 · 𝑥) + 1) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((2 · 𝑥) + 1) = -𝑁𝑁 = -((2 · 𝑥) + 1)))
2420, 22, 23syl2anc 692 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = -𝑁𝑁 = -((2 · 𝑥) + 1)))
25 eqcom 2628 . . . . . . . . . . . . . 14 (𝑁 = -((2 · 𝑥) + 1) ↔ -((2 · 𝑥) + 1) = 𝑁)
2614, 13, 15sylancr 694 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
27 ax-1cn 9946 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℂ
2814, 27mulcli 9997 . . . . . . . . . . . . . . . . . . . . . 22 (2 · 1) ∈ ℂ
29 addsubass 10243 . . . . . . . . . . . . . . . . . . . . . 22 (((2 · 𝑥) ∈ ℂ ∧ (2 · 1) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑥) + (2 · 1)) − 1) = ((2 · 𝑥) + ((2 · 1) − 1)))
3028, 27, 29mp3an23 1413 . . . . . . . . . . . . . . . . . . . . 21 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + (2 · 1)) − 1) = ((2 · 𝑥) + ((2 · 1) − 1)))
3126, 30syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → (((2 · 𝑥) + (2 · 1)) − 1) = ((2 · 𝑥) + ((2 · 1) − 1)))
32 2t1e2 11128 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 1) = 2
3332oveq1i 6620 . . . . . . . . . . . . . . . . . . . . . 22 ((2 · 1) − 1) = (2 − 1)
34 2m1e1 11087 . . . . . . . . . . . . . . . . . . . . . 22 (2 − 1) = 1
3533, 34eqtri 2643 . . . . . . . . . . . . . . . . . . . . 21 ((2 · 1) − 1) = 1
3635oveq2i 6621 . . . . . . . . . . . . . . . . . . . 20 ((2 · 𝑥) + ((2 · 1) − 1)) = ((2 · 𝑥) + 1)
3731, 36syl6req 2672 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → ((2 · 𝑥) + 1) = (((2 · 𝑥) + (2 · 1)) − 1))
38 adddi 9977 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 1 ∈ ℂ) → (2 · (𝑥 + 1)) = ((2 · 𝑥) + (2 · 1)))
3914, 27, 38mp3an13 1412 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℂ → (2 · (𝑥 + 1)) = ((2 · 𝑥) + (2 · 1)))
4013, 39syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → (2 · (𝑥 + 1)) = ((2 · 𝑥) + (2 · 1)))
4140oveq1d 6625 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → ((2 · (𝑥 + 1)) − 1) = (((2 · 𝑥) + (2 · 1)) − 1))
4237, 41eqtr4d 2658 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → ((2 · 𝑥) + 1) = ((2 · (𝑥 + 1)) − 1))
4342negeqd 10227 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → -((2 · 𝑥) + 1) = -((2 · (𝑥 + 1)) − 1))
449zcnd 11435 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → (𝑥 + 1) ∈ ℂ)
45 mulneg2 10419 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℂ ∧ (𝑥 + 1) ∈ ℂ) → (2 · -(𝑥 + 1)) = -(2 · (𝑥 + 1)))
4614, 44, 45sylancr 694 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → (2 · -(𝑥 + 1)) = -(2 · (𝑥 + 1)))
4746oveq1d 6625 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → ((2 · -(𝑥 + 1)) + 1) = (-(2 · (𝑥 + 1)) + 1))
48 mulcl 9972 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ ℂ ∧ (𝑥 + 1) ∈ ℂ) → (2 · (𝑥 + 1)) ∈ ℂ)
4914, 44, 48sylancr 694 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → (2 · (𝑥 + 1)) ∈ ℂ)
50 negsubdi 10289 . . . . . . . . . . . . . . . . . . 19 (((2 · (𝑥 + 1)) ∈ ℂ ∧ 1 ∈ ℂ) → -((2 · (𝑥 + 1)) − 1) = (-(2 · (𝑥 + 1)) + 1))
5149, 27, 50sylancl 693 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → -((2 · (𝑥 + 1)) − 1) = (-(2 · (𝑥 + 1)) + 1))
5247, 51eqtr4d 2658 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → ((2 · -(𝑥 + 1)) + 1) = -((2 · (𝑥 + 1)) − 1))
5343, 52eqtr4d 2658 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → -((2 · 𝑥) + 1) = ((2 · -(𝑥 + 1)) + 1))
5453adantl 482 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → -((2 · 𝑥) + 1) = ((2 · -(𝑥 + 1)) + 1))
5554eqeq1d 2623 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (-((2 · 𝑥) + 1) = 𝑁 ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
5625, 55syl5bb 272 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (𝑁 = -((2 · 𝑥) + 1) ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
5724, 56bitrd 268 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = -𝑁 ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
5857biimpa 501 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) ∧ ((2 · 𝑥) + 1) = -𝑁) → ((2 · -(𝑥 + 1)) + 1) = 𝑁)
59 oveq2 6618 . . . . . . . . . . . . . 14 (𝑛 = -(𝑥 + 1) → (2 · 𝑛) = (2 · -(𝑥 + 1)))
6059oveq1d 6625 . . . . . . . . . . . . 13 (𝑛 = -(𝑥 + 1) → ((2 · 𝑛) + 1) = ((2 · -(𝑥 + 1)) + 1))
6160eqeq1d 2623 . . . . . . . . . . . 12 (𝑛 = -(𝑥 + 1) → (((2 · 𝑛) + 1) = 𝑁 ↔ ((2 · -(𝑥 + 1)) + 1) = 𝑁))
6261rspcev 3298 . . . . . . . . . . 11 ((-(𝑥 + 1) ∈ ℤ ∧ ((2 · -(𝑥 + 1)) + 1) = 𝑁) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
6312, 58, 62syl2anc 692 . . . . . . . . . 10 (((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) ∧ ((2 · 𝑥) + 1) = -𝑁) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
6463ex 450 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = -𝑁 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
6564rexlimdva 3025 . . . . . . . 8 (𝑁 ∈ ℝ → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = -𝑁 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
66 znegcl 11364 . . . . . . . . . . . 12 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
6766ad2antlr 762 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 2) = -𝑁) → -𝑦 ∈ ℤ)
68 zcn 11334 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
69 mulcl 9972 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑦 · 2) ∈ ℂ)
7068, 14, 69sylancl 693 . . . . . . . . . . . . . 14 (𝑦 ∈ ℤ → (𝑦 · 2) ∈ ℂ)
71 recn 9978 . . . . . . . . . . . . . 14 (𝑁 ∈ ℝ → 𝑁 ∈ ℂ)
72 negcon2 10286 . . . . . . . . . . . . . 14 (((𝑦 · 2) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑦 · 2) = -𝑁𝑁 = -(𝑦 · 2)))
7370, 71, 72syl2anr 495 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((𝑦 · 2) = -𝑁𝑁 = -(𝑦 · 2)))
74 mulneg1 10418 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℂ ∧ 2 ∈ ℂ) → (-𝑦 · 2) = -(𝑦 · 2))
7568, 14, 74sylancl 693 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℤ → (-𝑦 · 2) = -(𝑦 · 2))
7675adantl 482 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → (-𝑦 · 2) = -(𝑦 · 2))
7776eqeq1d 2623 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((-𝑦 · 2) = 𝑁 ↔ -(𝑦 · 2) = 𝑁))
78 eqcom 2628 . . . . . . . . . . . . . 14 (𝑁 = -(𝑦 · 2) ↔ -(𝑦 · 2) = 𝑁)
7977, 78syl6rbbr 279 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → (𝑁 = -(𝑦 · 2) ↔ (-𝑦 · 2) = 𝑁))
8073, 79bitrd 268 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((𝑦 · 2) = -𝑁 ↔ (-𝑦 · 2) = 𝑁))
8180biimpa 501 . . . . . . . . . . 11 (((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 2) = -𝑁) → (-𝑦 · 2) = 𝑁)
82 oveq1 6617 . . . . . . . . . . . . 13 (𝑘 = -𝑦 → (𝑘 · 2) = (-𝑦 · 2))
8382eqeq1d 2623 . . . . . . . . . . . 12 (𝑘 = -𝑦 → ((𝑘 · 2) = 𝑁 ↔ (-𝑦 · 2) = 𝑁))
8483rspcev 3298 . . . . . . . . . . 11 ((-𝑦 ∈ ℤ ∧ (-𝑦 · 2) = 𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)
8567, 81, 84syl2anc 692 . . . . . . . . . 10 (((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) ∧ (𝑦 · 2) = -𝑁) → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)
8685ex 450 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 𝑦 ∈ ℤ) → ((𝑦 · 2) = -𝑁 → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
8786rexlimdva 3025 . . . . . . . 8 (𝑁 ∈ ℝ → (∃𝑦 ∈ ℤ (𝑦 · 2) = -𝑁 → ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
8865, 87orim12d 882 . . . . . . 7 (𝑁 ∈ ℝ → ((∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = -𝑁 ∨ ∃𝑦 ∈ ℤ (𝑦 · 2) = -𝑁) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)))
898, 88syl5 34 . . . . . 6 (𝑁 ∈ ℝ → (-𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)))
9089imp 445 . . . . 5 ((𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
917, 90jaodan 825 . . . 4 ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
925, 91sylbi 207 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
93 halfnz 11407 . . . 4 ¬ (1 / 2) ∈ ℤ
94 reeanv 3100 . . . . 5 (∃𝑛 ∈ ℤ ∃𝑘 ∈ ℤ (((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
95 eqtr3 2642 . . . . . . 7 ((((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) → ((2 · 𝑛) + 1) = (𝑘 · 2))
96 zcn 11334 . . . . . . . . . . 11 (𝑘 ∈ ℤ → 𝑘 ∈ ℂ)
97 mulcom 9974 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 2 ∈ ℂ) → (𝑘 · 2) = (2 · 𝑘))
9896, 14, 97sylancl 693 . . . . . . . . . 10 (𝑘 ∈ ℤ → (𝑘 · 2) = (2 · 𝑘))
9998eqeq2d 2631 . . . . . . . . 9 (𝑘 ∈ ℤ → (((2 · 𝑛) + 1) = (𝑘 · 2) ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
10099adantl 482 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑛) + 1) = (𝑘 · 2) ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
101 mulcl 9972 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · 𝑘) ∈ ℂ)
10214, 96, 101sylancr 694 . . . . . . . . . 10 (𝑘 ∈ ℤ → (2 · 𝑘) ∈ ℂ)
103 zcn 11334 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
104 mulcl 9972 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
10514, 103, 104sylancr 694 . . . . . . . . . 10 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℂ)
106 subadd 10236 . . . . . . . . . . 11 (((2 · 𝑘) ∈ ℂ ∧ (2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
10727, 106mp3an3 1410 . . . . . . . . . 10 (((2 · 𝑘) ∈ ℂ ∧ (2 · 𝑛) ∈ ℂ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
108102, 105, 107syl2anr 495 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 ↔ ((2 · 𝑛) + 1) = (2 · 𝑘)))
109 subcl 10232 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (𝑘𝑛) ∈ ℂ)
110 2cnne0 11194 . . . . . . . . . . . . . . 15 (2 ∈ ℂ ∧ 2 ≠ 0)
111 eqcom 2628 . . . . . . . . . . . . . . . 16 ((𝑘𝑛) = (1 / 2) ↔ (1 / 2) = (𝑘𝑛))
112 divmul 10640 . . . . . . . . . . . . . . . 16 ((1 ∈ ℂ ∧ (𝑘𝑛) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((1 / 2) = (𝑘𝑛) ↔ (2 · (𝑘𝑛)) = 1))
113111, 112syl5bb 272 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (𝑘𝑛) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
11427, 110, 113mp3an13 1412 . . . . . . . . . . . . . 14 ((𝑘𝑛) ∈ ℂ → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
115109, 114syl 17 . . . . . . . . . . . . 13 ((𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
116115ancoms 469 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘𝑛) = (1 / 2) ↔ (2 · (𝑘𝑛)) = 1))
117 subdi 10415 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
11814, 117mp3an1 1408 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
119118ancoms 469 . . . . . . . . . . . . 13 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → (2 · (𝑘𝑛)) = ((2 · 𝑘) − (2 · 𝑛)))
120119eqeq1d 2623 . . . . . . . . . . . 12 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((2 · (𝑘𝑛)) = 1 ↔ ((2 · 𝑘) − (2 · 𝑛)) = 1))
121116, 120bitrd 268 . . . . . . . . . . 11 ((𝑛 ∈ ℂ ∧ 𝑘 ∈ ℂ) → ((𝑘𝑛) = (1 / 2) ↔ ((2 · 𝑘) − (2 · 𝑛)) = 1))
122103, 96, 121syl2an 494 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑛) = (1 / 2) ↔ ((2 · 𝑘) − (2 · 𝑛)) = 1))
123 zsubcl 11371 . . . . . . . . . . . 12 ((𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑘𝑛) ∈ ℤ)
124 eleq1 2686 . . . . . . . . . . . 12 ((𝑘𝑛) = (1 / 2) → ((𝑘𝑛) ∈ ℤ ↔ (1 / 2) ∈ ℤ))
125123, 124syl5ibcom 235 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑘𝑛) = (1 / 2) → (1 / 2) ∈ ℤ))
126125ancoms 469 . . . . . . . . . 10 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((𝑘𝑛) = (1 / 2) → (1 / 2) ∈ ℤ))
127122, 126sylbird 250 . . . . . . . . 9 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑘) − (2 · 𝑛)) = 1 → (1 / 2) ∈ ℤ))
128108, 127sylbird 250 . . . . . . . 8 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑛) + 1) = (2 · 𝑘) → (1 / 2) ∈ ℤ))
129100, 128sylbid 230 . . . . . . 7 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (((2 · 𝑛) + 1) = (𝑘 · 2) → (1 / 2) ∈ ℤ))
13095, 129syl5 34 . . . . . 6 ((𝑛 ∈ ℤ ∧ 𝑘 ∈ ℤ) → ((((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) → (1 / 2) ∈ ℤ))
131130rexlimivv 3030 . . . . 5 (∃𝑛 ∈ ℤ ∃𝑘 ∈ ℤ (((2 · 𝑛) + 1) = 𝑁 ∧ (𝑘 · 2) = 𝑁) → (1 / 2) ∈ ℤ)
13294, 131sylbir 225 . . . 4 ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) → (1 / 2) ∈ ℤ)
13393, 132mto 188 . . 3 ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)
134 pm5.17 931 . . . 4 (((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ∧ ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)) ↔ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ↔ ¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
135 bicom 212 . . . 4 ((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ↔ ¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ↔ (¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
136134, 135bitri 264 . . 3 (((∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁) ∧ ¬ (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∧ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁)) ↔ (¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
13792, 133, 136sylanblc 695 . 2 (𝑁 ∈ ℤ → (¬ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
1384, 137bitrd 268 1 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∃wrex 2908   class class class wbr 4618  (class class class)co 6610  ℂcc 9886  ℝcr 9887  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893   − cmin 10218  -cneg 10219   / cdiv 10636  2c2 11022  ℕ0cn0 11244  ℤcz 11329   ∥ cdvds 14918 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-n0 11245  df-z 11330  df-dvds 14919 This theorem is referenced by:  oddm1even  15002  oexpneg  15004  mod2eq1n2dvds  15006  oddnn02np1  15007  2tp1odd  15011  sqoddm1div8z  15013  ltoddhalfle  15020  halfleoddlt  15021  opoe  15022  omoe  15023  opeo  15024  omeo  15025  m1expo  15027  m1exp1  15028  flodddiv4  15072  iserodd  15475  leibpilem1  24584  lgsquadlem1  25022  knoppndvlem9  32188  coskpi2  39408  cosknegpi  39411  stirlinglem5  39628  fourierswlem  39780  fmtnoodd  40770  dfodd3  40888
 Copyright terms: Public domain W3C validator