Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rdgeqoa Structured version   Visualization version   GIF version

Theorem rdgeqoa 34654
Description: If a recursive function with an initial value 𝐴 at step 𝑁 is equal to itself with an initial value 𝐵 at step 𝑀, then every finite number of successor steps will also be equal. (Contributed by ML, 21-Oct-2020.)
Assertion
Ref Expression
rdgeqoa ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋))))

Proof of Theorem rdgeqoa
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp3 1134 . 2 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → 𝑋 ∈ ω)
2 eleq1 2900 . . . . 5 (𝑥 = 𝑋 → (𝑥 ∈ ω ↔ 𝑋 ∈ ω))
323anbi3d 1438 . . . 4 (𝑥 = 𝑋 → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω)))
4 oveq2 7164 . . . . . . 7 (𝑥 = 𝑋 → (𝑁 +o 𝑥) = (𝑁 +o 𝑋))
54fveq2d 6674 . . . . . 6 (𝑥 = 𝑋 → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)))
6 oveq2 7164 . . . . . . 7 (𝑥 = 𝑋 → (𝑀 +o 𝑥) = (𝑀 +o 𝑋))
76fveq2d 6674 . . . . . 6 (𝑥 = 𝑋 → (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋)))
85, 7eqeq12d 2837 . . . . 5 (𝑥 = 𝑋 → ((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋))))
98imbi2d 343 . . . 4 (𝑥 = 𝑋 → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋)))))
103, 9imbi12d 347 . . 3 (𝑥 = 𝑋 → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋))))))
11 peano1 7601 . . . . 5 ∅ ∈ ω
12 oa0 8141 . . . . . . . . . . . 12 (𝑁 ∈ On → (𝑁 +o ∅) = 𝑁)
1312fveq2d 6674 . . . . . . . . . . 11 (𝑁 ∈ On → (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐴)‘𝑁))
1413eqcomd 2827 . . . . . . . . . 10 (𝑁 ∈ On → (rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐴)‘(𝑁 +o ∅)))
15 oa0 8141 . . . . . . . . . . . 12 (𝑀 ∈ On → (𝑀 +o ∅) = 𝑀)
1615fveq2d 6674 . . . . . . . . . . 11 (𝑀 ∈ On → (rec(𝐹, 𝐵)‘(𝑀 +o ∅)) = (rec(𝐹, 𝐵)‘𝑀))
1716eqcomd 2827 . . . . . . . . . 10 (𝑀 ∈ On → (rec(𝐹, 𝐵)‘𝑀) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅)))
1814, 17eqeqan12d 2838 . . . . . . . . 9 ((𝑁 ∈ On ∧ 𝑀 ∈ On) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅))))
1918biimpd 231 . . . . . . . 8 ((𝑁 ∈ On ∧ 𝑀 ∈ On) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅))))
20 eleq1 2900 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑥 ∈ ω ↔ ∅ ∈ ω))
21203anbi3d 1438 . . . . . . . . . 10 (𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω)))
2211biantru 532 . . . . . . . . . . . 12 (𝑀 ∈ On ↔ (𝑀 ∈ On ∧ ∅ ∈ ω))
2322anbi2i 624 . . . . . . . . . . 11 ((𝑁 ∈ On ∧ 𝑀 ∈ On) ↔ (𝑁 ∈ On ∧ (𝑀 ∈ On ∧ ∅ ∈ ω)))
24 3anass 1091 . . . . . . . . . . 11 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω) ↔ (𝑁 ∈ On ∧ (𝑀 ∈ On ∧ ∅ ∈ ω)))
2523, 24bitr4i 280 . . . . . . . . . 10 ((𝑁 ∈ On ∧ 𝑀 ∈ On) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ ∅ ∈ ω))
2621, 25syl6bbr 291 . . . . . . . . 9 (𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On)))
27 oveq2 7164 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑁 +o 𝑥) = (𝑁 +o ∅))
2827fveq2d 6674 . . . . . . . . . . 11 (𝑥 = ∅ → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +o ∅)))
29 oveq2 7164 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑀 +o 𝑥) = (𝑀 +o ∅))
3029fveq2d 6674 . . . . . . . . . . 11 (𝑥 = ∅ → (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅)))
3128, 30eqeq12d 2837 . . . . . . . . . 10 (𝑥 = ∅ → ((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅))))
3231imbi2d 343 . . . . . . . . 9 (𝑥 = ∅ → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅)))))
3326, 32imbi12d 347 . . . . . . . 8 (𝑥 = ∅ → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o ∅)) = (rec(𝐹, 𝐵)‘(𝑀 +o ∅))))))
3419, 33mpbiri 260 . . . . . . 7 (𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
3534ax-gen 1796 . . . . . 6 𝑥(𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
36 sbc6g 3801 . . . . . 6 (∅ ∈ ω → ([∅ / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ∀𝑥(𝑥 = ∅ → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))))
3735, 36mpbiri 260 . . . . 5 (∅ ∈ ω → [∅ / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
3811, 37ax-mp 5 . . . 4 [∅ / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
39 peano2b 7596 . . . . 5 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
40393anbi3i 1155 . . . . . . . 8 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω))
4140imbi1i 352 . . . . . . 7 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
42 nnon 7586 . . . . . . . . . . . . 13 (𝑥 ∈ ω → 𝑥 ∈ On)
43 oacl 8160 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ On ∧ 𝑥 ∈ On) → (𝑁 +o 𝑥) ∈ On)
44 oacl 8160 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ On ∧ 𝑥 ∈ On) → (𝑀 +o 𝑥) ∈ On)
4543, 44anim12i 614 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ On ∧ 𝑥 ∈ On) ∧ (𝑀 ∈ On ∧ 𝑥 ∈ On)) → ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On))
46453impdir 1347 . . . . . . . . . . . . . . 15 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On) → ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On))
47 rdgsuc 8060 . . . . . . . . . . . . . . . . . 18 ((𝑁 +o 𝑥) ∈ On → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥))))
48 fveq2 6670 . . . . . . . . . . . . . . . . . 18 ((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) → (𝐹‘(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥))) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
4947, 48sylan9eqr 2878 . . . . . . . . . . . . . . . . 17 (((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ (𝑁 +o 𝑥) ∈ On) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
5049adantrr 715 . . . . . . . . . . . . . . . 16 (((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On)) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
51 rdgsuc 8060 . . . . . . . . . . . . . . . . 17 ((𝑀 +o 𝑥) ∈ On → (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
5251ad2antll 727 . . . . . . . . . . . . . . . 16 (((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On)) → (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)) = (𝐹‘(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
5350, 52eqtr4d 2859 . . . . . . . . . . . . . . 15 (((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ ((𝑁 +o 𝑥) ∈ On ∧ (𝑀 +o 𝑥) ∈ On)) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
5446, 53sylan2 594 . . . . . . . . . . . . . 14 (((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ∧ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On)) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
5554ancoms 461 . . . . . . . . . . . . 13 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ On) ∧ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
5642, 55syl3anl3 1410 . . . . . . . . . . . 12 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
57 onasuc 8153 . . . . . . . . . . . . . . 15 ((𝑁 ∈ On ∧ 𝑥 ∈ ω) → (𝑁 +o suc 𝑥) = suc (𝑁 +o 𝑥))
5857fveq2d 6674 . . . . . . . . . . . . . 14 ((𝑁 ∈ On ∧ 𝑥 ∈ ω) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)))
59583adant2 1127 . . . . . . . . . . . . 13 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)))
6059adantr 483 . . . . . . . . . . . 12 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐴)‘suc (𝑁 +o 𝑥)))
61 onasuc 8153 . . . . . . . . . . . . . . 15 ((𝑀 ∈ On ∧ 𝑥 ∈ ω) → (𝑀 +o suc 𝑥) = suc (𝑀 +o 𝑥))
6261fveq2d 6674 . . . . . . . . . . . . . 14 ((𝑀 ∈ On ∧ 𝑥 ∈ ω) → (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
63623adant1 1126 . . . . . . . . . . . . 13 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
6463adantr 483 . . . . . . . . . . . 12 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘suc (𝑀 +o 𝑥)))
6556, 60, 643eqtr4d 2866 . . . . . . . . . . 11 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ∧ (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))
6665ex 415 . . . . . . . . . 10 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))
6766imim2d 57 . . . . . . . . 9 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
6840, 67sylbir 237 . . . . . . . 8 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → (((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
6968a2i 14 . . . . . . 7 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
7041, 69sylbi 219 . . . . . 6 (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
71 sbcimg 3820 . . . . . . 7 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → [suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))))
72 sbc3an 3838 . . . . . . . . 9 ([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ ([suc 𝑥 / 𝑥]𝑁 ∈ On ∧ [suc 𝑥 / 𝑥]𝑀 ∈ On ∧ [suc 𝑥 / 𝑥]𝑥 ∈ ω))
73 sbcg 3847 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]𝑁 ∈ On ↔ 𝑁 ∈ On))
74 sbcg 3847 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]𝑀 ∈ On ↔ 𝑀 ∈ On))
75 sbcel1v 3839 . . . . . . . . . . 11 ([suc 𝑥 / 𝑥]𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
7675a1i 11 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]𝑥 ∈ ω ↔ suc 𝑥 ∈ ω))
7773, 74, 763anbi123d 1432 . . . . . . . . 9 (suc 𝑥 ∈ ω → (([suc 𝑥 / 𝑥]𝑁 ∈ On ∧ [suc 𝑥 / 𝑥]𝑀 ∈ On ∧ [suc 𝑥 / 𝑥]𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω)))
7872, 77syl5bb 285 . . . . . . . 8 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) ↔ (𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω)))
79 sbcimg 3820 . . . . . . . . 9 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → [suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
80 sbcg 3847 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) ↔ (rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀)))
81 sbceqg 4361 . . . . . . . . . . 11 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ suc 𝑥 / 𝑥(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = suc 𝑥 / 𝑥(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))
82 csbfv12 6713 . . . . . . . . . . . . 13 suc 𝑥 / 𝑥(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (suc 𝑥 / 𝑥rec(𝐹, 𝐴)‘suc 𝑥 / 𝑥(𝑁 +o 𝑥))
83 csbconstg 3902 . . . . . . . . . . . . . 14 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥rec(𝐹, 𝐴) = rec(𝐹, 𝐴))
84 csbov123 7198 . . . . . . . . . . . . . . 15 suc 𝑥 / 𝑥(𝑁 +o 𝑥) = (suc 𝑥 / 𝑥𝑁suc 𝑥 / 𝑥 +o suc 𝑥 / 𝑥𝑥)
85 csbconstg 3902 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥 +o = +o )
86 csbconstg 3902 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥𝑁 = 𝑁)
87 csbvarg 4383 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥𝑥 = suc 𝑥)
8885, 86, 87oveq123d 7177 . . . . . . . . . . . . . . 15 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥𝑁suc 𝑥 / 𝑥 +o suc 𝑥 / 𝑥𝑥) = (𝑁 +o suc 𝑥))
8984, 88syl5eq 2868 . . . . . . . . . . . . . 14 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥(𝑁 +o 𝑥) = (𝑁 +o suc 𝑥))
9083, 89fveq12d 6677 . . . . . . . . . . . . 13 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥rec(𝐹, 𝐴)‘suc 𝑥 / 𝑥(𝑁 +o 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)))
9182, 90syl5eq 2868 . . . . . . . . . . . 12 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)))
92 csbfv12 6713 . . . . . . . . . . . . 13 suc 𝑥 / 𝑥(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) = (suc 𝑥 / 𝑥rec(𝐹, 𝐵)‘suc 𝑥 / 𝑥(𝑀 +o 𝑥))
93 csbconstg 3902 . . . . . . . . . . . . . 14 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥rec(𝐹, 𝐵) = rec(𝐹, 𝐵))
94 csbov123 7198 . . . . . . . . . . . . . . 15 suc 𝑥 / 𝑥(𝑀 +o 𝑥) = (suc 𝑥 / 𝑥𝑀suc 𝑥 / 𝑥 +o suc 𝑥 / 𝑥𝑥)
95 csbconstg 3902 . . . . . . . . . . . . . . . 16 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥𝑀 = 𝑀)
9685, 95, 87oveq123d 7177 . . . . . . . . . . . . . . 15 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥𝑀suc 𝑥 / 𝑥 +o suc 𝑥 / 𝑥𝑥) = (𝑀 +o suc 𝑥))
9794, 96syl5eq 2868 . . . . . . . . . . . . . 14 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥(𝑀 +o 𝑥) = (𝑀 +o suc 𝑥))
9893, 97fveq12d 6677 . . . . . . . . . . . . 13 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥rec(𝐹, 𝐵)‘suc 𝑥 / 𝑥(𝑀 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))
9992, 98syl5eq 2868 . . . . . . . . . . . 12 (suc 𝑥 ∈ ω → suc 𝑥 / 𝑥(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))
10091, 99eqeq12d 2837 . . . . . . . . . . 11 (suc 𝑥 ∈ ω → (suc 𝑥 / 𝑥(rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = suc 𝑥 / 𝑥(rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))
10181, 100bitrd 281 . . . . . . . . . 10 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)) ↔ (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))
10280, 101imbi12d 347 . . . . . . . . 9 (suc 𝑥 ∈ ω → (([suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → [suc 𝑥 / 𝑥](rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
10379, 102bitrd 281 . . . . . . . 8 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))) ↔ ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥)))))
10478, 103imbi12d 347 . . . . . . 7 (suc 𝑥 ∈ ω → (([suc 𝑥 / 𝑥](𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → [suc 𝑥 / 𝑥]((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))))
10571, 104bitrd 281 . . . . . 6 (suc 𝑥 ∈ ω → ([suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) ↔ ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ suc 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o suc 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o suc 𝑥))))))
10670, 105syl5ibr 248 . . . . 5 (suc 𝑥 ∈ ω → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) → [suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))))
10739, 106sylbi 219 . . . 4 (𝑥 ∈ ω → (((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))) → [suc 𝑥 / 𝑥]((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥))))))
10838, 107findes 7612 . . 3 (𝑥 ∈ ω → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑥 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑥)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑥)))))
10910, 108vtoclga 3574 . 2 (𝑋 ∈ ω → ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋)))))
1101, 109mpcom 38 1 ((𝑁 ∈ On ∧ 𝑀 ∈ On ∧ 𝑋 ∈ ω) → ((rec(𝐹, 𝐴)‘𝑁) = (rec(𝐹, 𝐵)‘𝑀) → (rec(𝐹, 𝐴)‘(𝑁 +o 𝑋)) = (rec(𝐹, 𝐵)‘(𝑀 +o 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  [wsbc 3772  csb 3883  c0 4291  Oncon0 6191  suc csuc 6193  cfv 6355  (class class class)co 7156  ωcom 7580  reccrdg 8045   +o coa 8099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-oadd 8106
This theorem is referenced by:  finxpreclem4  34678
  Copyright terms: Public domain W3C validator