Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pgrpsubgsymg Structured version   Visualization version   GIF version

Theorem pgrpsubgsymg 18048
 Description: Every permutation group is a subgroup of the corresponding symmetric group. (Contributed by AV, 14-Mar-2019.)
Hypotheses
Ref Expression
pgrpsubgsymgbi.g 𝐺 = (SymGrp‘𝐴)
pgrpsubgsymgbi.b 𝐵 = (Base‘𝐺)
pgrpsubgsymg.c 𝐹 = (Base‘𝑃)
Assertion
Ref Expression
pgrpsubgsymg (𝐴𝑉 → ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubGrp‘𝐺)))
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔   𝑓,𝐹,𝑔
Allowed substitution hints:   𝑃(𝑓,𝑔)   𝐺(𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem pgrpsubgsymg
StepHypRef Expression
1 pgrpsubgsymgbi.g . . . . 5 𝐺 = (SymGrp‘𝐴)
21symggrp 18040 . . . 4 (𝐴𝑉𝐺 ∈ Grp)
3 simp1 1131 . . . 4 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝑃 ∈ Grp)
42, 3anim12i 591 . . 3 ((𝐴𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → (𝐺 ∈ Grp ∧ 𝑃 ∈ Grp))
5 simp2 1132 . . . . 5 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹𝐵)
6 simp3 1133 . . . . . 6 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
7 pgrpsubgsymgbi.b . . . . . . . . . . 11 𝐵 = (Base‘𝐺)
8 eqid 2760 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
91, 7, 8symgplusg 18029 . . . . . . . . . 10 (+g𝐺) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
109eqcomi 2769 . . . . . . . . 9 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = (+g𝐺)
1110reseq1i 5547 . . . . . . . 8 ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = ((+g𝐺) ↾ (𝐹 × 𝐹))
12 resmpt2 6924 . . . . . . . . 9 ((𝐹𝐵𝐹𝐵) → ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
1312anidms 680 . . . . . . . 8 (𝐹𝐵 → ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
1411, 13syl5reqr 2809 . . . . . . 7 (𝐹𝐵 → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝐺) ↾ (𝐹 × 𝐹)))
15143ad2ant2 1129 . . . . . 6 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝐺) ↾ (𝐹 × 𝐹)))
166, 15eqtrd 2794 . . . . 5 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (+g𝑃) = ((+g𝐺) ↾ (𝐹 × 𝐹)))
175, 16jca 555 . . . 4 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (𝐹𝐵 ∧ (+g𝑃) = ((+g𝐺) ↾ (𝐹 × 𝐹))))
1817adantl 473 . . 3 ((𝐴𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → (𝐹𝐵 ∧ (+g𝑃) = ((+g𝐺) ↾ (𝐹 × 𝐹))))
19 pgrpsubgsymg.c . . . 4 𝐹 = (Base‘𝑃)
207, 19grpissubg 17835 . . 3 ((𝐺 ∈ Grp ∧ 𝑃 ∈ Grp) → ((𝐹𝐵 ∧ (+g𝑃) = ((+g𝐺) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubGrp‘𝐺)))
214, 18, 20sylc 65 . 2 ((𝐴𝑉 ∧ (𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → 𝐹 ∈ (SubGrp‘𝐺))
2221ex 449 1 (𝐴𝑉 → ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ (+g𝑃) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubGrp‘𝐺)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139   ⊆ wss 3715   × cxp 5264   ↾ cres 5268   ∘ ccom 5270  ‘cfv 6049   ↦ cmpt2 6816  Basecbs 16079  +gcplusg 16163  Grpcgrp 17643  SubGrpcsubg 17809  SymGrpcsymg 18017 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-tset 16182  df-0g 16324  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-grp 17646  df-minusg 17647  df-subg 17812  df-symg 18018 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator