Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poml4N Structured version   Visualization version   GIF version

Theorem poml4N 34051
Description: Orthomodular law for projective lattices. Lemma 3.3(1) in [Holland95] p. 215. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
poml4.a 𝐴 = (Atoms‘𝐾)
poml4.p = (⊥𝑃𝐾)
Assertion
Ref Expression
poml4N ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ((𝑋𝑌 ∧ ( ‘( 𝑌)) = 𝑌) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋))))

Proof of Theorem poml4N
StepHypRef Expression
1 eqcom 2617 . . 3 (( ‘( 𝑌)) = 𝑌𝑌 = ( ‘( 𝑌)))
2 eqid 2610 . . . . . . 7 (lub‘𝐾) = (lub‘𝐾)
3 poml4.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
4 eqid 2610 . . . . . . 7 (pmap‘𝐾) = (pmap‘𝐾)
5 poml4.p . . . . . . 7 = (⊥𝑃𝐾)
62, 3, 4, 52polvalN 34012 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑌𝐴) → ( ‘( 𝑌)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))
763adant2 1073 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ( ‘( 𝑌)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))
87eqeq2d 2620 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑌 = ( ‘( 𝑌)) ↔ 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
98biimpd 218 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (𝑌 = ( ‘( 𝑌)) → 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
101, 9syl5bi 231 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → (( ‘( 𝑌)) = 𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
11 simpl1 1057 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ HL)
12 hloml 33456 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OML)
1311, 12syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ OML)
14 hlclat 33457 . . . . . . . . 9 (𝐾 ∈ HL → 𝐾 ∈ CLat)
1511, 14syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ CLat)
16 simpl2 1058 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑋𝐴)
17 eqid 2610 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1817, 3atssbase 33389 . . . . . . . . 9 𝐴 ⊆ (Base‘𝐾)
1916, 18syl6ss 3580 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑋 ⊆ (Base‘𝐾))
2017, 2clatlubcl 16884 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑋 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
2115, 19, 20syl2anc 691 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾))
22 simpl3 1059 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑌𝐴)
2322, 18syl6ss 3580 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑌 ⊆ (Base‘𝐾))
2417, 2clatlubcl 16884 . . . . . . . 8 ((𝐾 ∈ CLat ∧ 𝑌 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾))
2515, 23, 24syl2anc 691 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾))
2613, 21, 253jca 1235 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (𝐾 ∈ OML ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)))
27 simprl 790 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑋𝑌)
28 eqid 2610 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
2917, 28, 2lubss 16893 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑌 ⊆ (Base‘𝐾) ∧ 𝑋𝑌) → ((lub‘𝐾)‘𝑋)(le‘𝐾)((lub‘𝐾)‘𝑌))
3015, 23, 27, 29syl3anc 1318 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((lub‘𝐾)‘𝑋)(le‘𝐾)((lub‘𝐾)‘𝑌))
31 eqid 2610 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
32 eqid 2610 . . . . . . 7 (oc‘𝐾) = (oc‘𝐾)
3317, 28, 31, 32omllaw4 33345 . . . . . 6 ((𝐾 ∈ OML ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘𝑋)(le‘𝐾)((lub‘𝐾)‘𝑌) → (((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌)) = ((lub‘𝐾)‘𝑋)))
3426, 30, 33sylc 63 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌)) = ((lub‘𝐾)‘𝑋))
3534fveq2d 6092 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)))
362, 32, 3, 4, 5polval2N 34004 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( 𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))))
3711, 16, 36syl2anc 691 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( 𝑋) = ((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))))
38 simprr 792 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))
3937, 38ineq12d 3777 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( 𝑋) ∩ 𝑌) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
40 hlop 33461 . . . . . . . . . . . 12 (𝐾 ∈ HL → 𝐾 ∈ OP)
4111, 40syl 17 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ OP)
4217, 32opoccl 33293 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ ((lub‘𝐾)‘𝑋) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
4341, 21, 42syl2anc 691 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾))
4417, 31, 3, 4pmapmeet 33871 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
4511, 43, 25, 44syl3anc 1318 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘((lub‘𝐾)‘𝑋))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
4639, 45eqtr4d 2647 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( 𝑋) ∩ 𝑌) = ((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))))
4746fveq2d 6092 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ‘(( 𝑋) ∩ 𝑌)) = ( ‘((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))))
48 hllat 33462 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Lat)
4911, 48syl 17 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → 𝐾 ∈ Lat)
5017, 31latmcl 16824 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘((lub‘𝐾)‘𝑋)) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → (((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾))
5149, 43, 25, 50syl3anc 1318 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾))
5217, 32, 4, 5polpmapN 34010 . . . . . . . 8 ((𝐾 ∈ HL ∧ (((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) → ( ‘((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) = ((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))))
5311, 51, 52syl2anc 691 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ‘((pmap‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) = ((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))))
5447, 53eqtrd 2644 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ‘(( 𝑋) ∩ 𝑌)) = ((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))))
5554, 38ineq12d 3777 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = (((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
5617, 32opoccl 33293 . . . . . . 7 ((𝐾 ∈ OP ∧ (((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)) ∈ (Base‘𝐾)) → ((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ (Base‘𝐾))
5741, 51, 56syl2anc 691 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ (Base‘𝐾))
5817, 31, 3, 4pmapmeet 33871 . . . . . 6 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌))) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑌) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
5911, 57, 25, 58syl3anc 1318 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))) = (((pmap‘𝐾)‘((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))) ∩ ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))))
6055, 59eqtr4d 2647 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ((pmap‘𝐾)‘(((oc‘𝐾)‘(((oc‘𝐾)‘((lub‘𝐾)‘𝑋))(meet‘𝐾)((lub‘𝐾)‘𝑌)))(meet‘𝐾)((lub‘𝐾)‘𝑌))))
612, 3, 4, 52polvalN 34012 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐴) → ( ‘( 𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)))
6211, 16, 61syl2anc 691 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → ( ‘( 𝑋)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑋)))
6335, 60, 623eqtr4d 2654 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) ∧ (𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌)))) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋)))
6463ex 449 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ((𝑋𝑌𝑌 = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑌))) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋))))
6510, 64sylan2d 498 1 ((𝐾 ∈ HL ∧ 𝑋𝐴𝑌𝐴) → ((𝑋𝑌 ∧ ( ‘( 𝑌)) = 𝑌) → (( ‘(( 𝑋) ∩ 𝑌)) ∩ 𝑌) = ( ‘( 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cin 3539  wss 3540   class class class wbr 4578  cfv 5790  (class class class)co 6527  Basecbs 15644  lecple 15724  occoc 15725  lubclub 16714  meetcmee 16717  Latclat 16817  CLatccla 16879  OPcops 33271  OMLcoml 33274  Atomscatm 33362  HLchlt 33449  pmapcpmap 33595  𝑃cpolN 34000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-riotaBAD 33051
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4368  df-iun 4452  df-iin 4453  df-br 4579  df-opab 4639  df-mpt 4640  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-undef 7264  df-preset 16700  df-poset 16718  df-plt 16730  df-lub 16746  df-glb 16747  df-join 16748  df-meet 16749  df-p0 16811  df-p1 16812  df-lat 16818  df-clat 16880  df-oposet 33275  df-ol 33277  df-oml 33278  df-covers 33365  df-ats 33366  df-atl 33397  df-cvlat 33421  df-hlat 33450  df-pmap 33602  df-polarityN 34001
This theorem is referenced by:  poml5N  34052  poml6N  34053  pexmidlem6N  34073
  Copyright terms: Public domain W3C validator