MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsleval Structured version   Visualization version   GIF version

Theorem prdsleval 16131
Description: Value of the product ordering in a structure product. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
prdsbasmpt.y 𝑌 = (𝑆Xs𝑅)
prdsbasmpt.b 𝐵 = (Base‘𝑌)
prdsbasmpt.s (𝜑𝑆𝑉)
prdsbasmpt.i (𝜑𝐼𝑊)
prdsbasmpt.r (𝜑𝑅 Fn 𝐼)
prdsplusgval.f (𝜑𝐹𝐵)
prdsplusgval.g (𝜑𝐺𝐵)
prdsleval.l = (le‘𝑌)
Assertion
Ref Expression
prdsleval (𝜑 → (𝐹 𝐺 ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝐺   𝜑,𝑥   𝑥,𝐼   𝑥,𝑉   𝑥,𝑅   𝑥,𝑆   𝑥,𝑊   𝑥,𝑌
Allowed substitution hint:   (𝑥)

Proof of Theorem prdsleval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-br 4652 . . 3 (𝐹 𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ )
2 prdsbasmpt.y . . . . . 6 𝑌 = (𝑆Xs𝑅)
3 prdsbasmpt.s . . . . . 6 (𝜑𝑆𝑉)
4 prdsbasmpt.r . . . . . . 7 (𝜑𝑅 Fn 𝐼)
5 prdsbasmpt.i . . . . . . 7 (𝜑𝐼𝑊)
6 fnex 6478 . . . . . . 7 ((𝑅 Fn 𝐼𝐼𝑊) → 𝑅 ∈ V)
74, 5, 6syl2anc 693 . . . . . 6 (𝜑𝑅 ∈ V)
8 prdsbasmpt.b . . . . . 6 𝐵 = (Base‘𝑌)
9 fndm 5988 . . . . . . 7 (𝑅 Fn 𝐼 → dom 𝑅 = 𝐼)
104, 9syl 17 . . . . . 6 (𝜑 → dom 𝑅 = 𝐼)
11 prdsleval.l . . . . . 6 = (le‘𝑌)
122, 3, 7, 8, 10, 11prdsle 16116 . . . . 5 (𝜑 = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
13 vex 3201 . . . . . . . 8 𝑓 ∈ V
14 vex 3201 . . . . . . . 8 𝑔 ∈ V
1513, 14prss 4349 . . . . . . 7 ((𝑓𝐵𝑔𝐵) ↔ {𝑓, 𝑔} ⊆ 𝐵)
1615anbi1i 731 . . . . . 6 (((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)) ↔ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥)))
1716opabbii 4715 . . . . 5 {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} = {⟨𝑓, 𝑔⟩ ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}
1812, 17syl6eqr 2673 . . . 4 (𝜑 = {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))})
1918eleq2d 2686 . . 3 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ ↔ ⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}))
201, 19syl5bb 272 . 2 (𝜑 → (𝐹 𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))}))
21 prdsplusgval.f . . 3 (𝜑𝐹𝐵)
22 prdsplusgval.g . . 3 (𝜑𝐺𝐵)
23 fveq1 6188 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
24 fveq1 6188 . . . . . 6 (𝑔 = 𝐺 → (𝑔𝑥) = (𝐺𝑥))
2523, 24breqan12d 4667 . . . . 5 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥) ↔ (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2625ralbidv 2985 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥) ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2726opelopab2a 4988 . . 3 ((𝐹𝐵𝐺𝐵) → (⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2821, 22, 27syl2anc 693 . 2 (𝜑 → (⟨𝐹, 𝐺⟩ ∈ {⟨𝑓, 𝑔⟩ ∣ ((𝑓𝐵𝑔𝐵) ∧ ∀𝑥𝐼 (𝑓𝑥)(le‘(𝑅𝑥))(𝑔𝑥))} ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
2920, 28bitrd 268 1 (𝜑 → (𝐹 𝐺 ↔ ∀𝑥𝐼 (𝐹𝑥)(le‘(𝑅𝑥))(𝐺𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1482  wcel 1989  wral 2911  Vcvv 3198  wss 3572  {cpr 4177  cop 4181   class class class wbr 4651  {copab 4710  dom cdm 5112   Fn wfn 5881  cfv 5886  (class class class)co 6647  Basecbs 15851  lecple 15942  Xscprds 16100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-map 7856  df-ixp 7906  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-sup 8345  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-fz 12324  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-plusg 15948  df-mulr 15949  df-sca 15951  df-vsca 15952  df-ip 15953  df-tset 15954  df-ple 15955  df-ds 15958  df-hom 15960  df-cco 15961  df-prds 16102
This theorem is referenced by:  xpsle  16235
  Copyright terms: Public domain W3C validator