MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preduz Structured version   Visualization version   GIF version

Theorem preduz 12402
Description: The value of the predecessor class over an upper integer set. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
preduz (𝑁 ∈ (ℤ𝑀) → Pred( < , (ℤ𝑀), 𝑁) = (𝑀...(𝑁 − 1)))

Proof of Theorem preduz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3189 . . . . . 6 𝑥 ∈ V
21elpred 5652 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑥 < 𝑁)))
3 eluzelz 11641 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
4 eluzelz 11641 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
5 zltlem1 11374 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 < 𝑁𝑥 ≤ (𝑁 − 1)))
63, 4, 5syl2anr 495 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝑥 < 𝑁𝑥 ≤ (𝑁 − 1)))
76pm5.32da 672 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑥 < 𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑥 ≤ (𝑁 − 1))))
8 eluzel2 11636 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
9 eluz1 11635 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥)))
108, 9syl 17 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ (ℤ𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥)))
1110anbi1d 740 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑥 ≤ (𝑁 − 1)) ↔ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
127, 11bitrd 268 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑥 < 𝑁) ↔ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
132, 12bitrd 268 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
14 peano2zm 11364 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
154, 14syl 17 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 − 1) ∈ ℤ)
168, 15jca 554 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ))
1716biantrurd 529 . . . 4 (𝑁 ∈ (ℤ𝑀) → (((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)))))
1813, 17bitrd 268 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)))))
19 elfz2 12275 . . . 4 (𝑥 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))))
20 df-3an 1038 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ))
2120anbi1i 730 . . . 4 (((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))) ↔ (((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))))
22 anass 680 . . . . 5 ((((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1)))))
23 anass 680 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)) ↔ (𝑥 ∈ ℤ ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))))
2423anbi2i 729 . . . . 5 (((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1)))))
2522, 24bitr4i 267 . . . 4 ((((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
2619, 21, 253bitri 286 . . 3 (𝑥 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
2718, 26syl6bbr 278 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1))))
2827eqrdv 2619 1 (𝑁 ∈ (ℤ𝑀) → Pred( < , (ℤ𝑀), 𝑁) = (𝑀...(𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4613  Predcpred 5638  cfv 5847  (class class class)co 6604  1c1 9881   < clt 10018  cle 10019  cmin 10210  cz 11321  cuz 11631  ...cfz 12268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269
This theorem is referenced by:  prednn  12403  prednn0  12404  uzsinds  12726
  Copyright terms: Public domain W3C validator