MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  preduz Structured version   Visualization version   GIF version

Theorem preduz 12576
Description: The value of the predecessor class over an upper integer set. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
preduz (𝑁 ∈ (ℤ𝑀) → Pred( < , (ℤ𝑀), 𝑁) = (𝑀...(𝑁 − 1)))

Proof of Theorem preduz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3307 . . . . . 6 𝑥 ∈ V
21elpred 5806 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑥 < 𝑁)))
3 eluzelz 11810 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → 𝑥 ∈ ℤ)
4 eluzelz 11810 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
5 zltlem1 11543 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑥 < 𝑁𝑥 ≤ (𝑁 − 1)))
63, 4, 5syl2anr 496 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑥 ∈ (ℤ𝑀)) → (𝑥 < 𝑁𝑥 ≤ (𝑁 − 1)))
76pm5.32da 676 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑥 < 𝑁) ↔ (𝑥 ∈ (ℤ𝑀) ∧ 𝑥 ≤ (𝑁 − 1))))
8 eluzel2 11805 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
9 eluz1 11804 . . . . . . . 8 (𝑀 ∈ ℤ → (𝑥 ∈ (ℤ𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥)))
108, 9syl 17 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ (ℤ𝑀) ↔ (𝑥 ∈ ℤ ∧ 𝑀𝑥)))
1110anbi1d 743 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑥 ≤ (𝑁 − 1)) ↔ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
127, 11bitrd 268 . . . . 5 (𝑁 ∈ (ℤ𝑀) → ((𝑥 ∈ (ℤ𝑀) ∧ 𝑥 < 𝑁) ↔ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
132, 12bitrd 268 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
14 peano2zm 11533 . . . . . . 7 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
154, 14syl 17 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → (𝑁 − 1) ∈ ℤ)
168, 15jca 555 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ))
1716biantrurd 530 . . . 4 (𝑁 ∈ (ℤ𝑀) → (((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)))))
1813, 17bitrd 268 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)))))
19 elfz2 12447 . . . 4 (𝑥 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))))
20 df-3an 1074 . . . . 5 ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ))
2120anbi1i 733 . . . 4 (((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))) ↔ (((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))))
22 anass 684 . . . . 5 ((((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1)))))
23 anass 684 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1)) ↔ (𝑥 ∈ ℤ ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))))
2423anbi2i 732 . . . . 5 (((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1)))))
2522, 24bitr4i 267 . . . 4 ((((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ 𝑥 ∈ ℤ) ∧ (𝑀𝑥𝑥 ≤ (𝑁 − 1))) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
2619, 21, 253bitri 286 . . 3 (𝑥 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ) ∧ ((𝑥 ∈ ℤ ∧ 𝑀𝑥) ∧ 𝑥 ≤ (𝑁 − 1))))
2718, 26syl6bbr 278 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑥 ∈ Pred( < , (ℤ𝑀), 𝑁) ↔ 𝑥 ∈ (𝑀...(𝑁 − 1))))
2827eqrdv 2722 1 (𝑁 ∈ (ℤ𝑀) → Pred( < , (ℤ𝑀), 𝑁) = (𝑀...(𝑁 − 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103   class class class wbr 4760  Predcpred 5792  cfv 6001  (class class class)co 6765  1c1 10050   < clt 10187  cle 10188  cmin 10379  cz 11490  cuz 11800  ...cfz 12440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-n0 11406  df-z 11491  df-uz 11801  df-fz 12441
This theorem is referenced by:  prednn  12577  prednn0  12578  uzsinds  12901
  Copyright terms: Public domain W3C validator