MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpnndm Structured version   Visualization version   GIF version

Theorem relexpnndm 14402
Description: The domain of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpnndm ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)

Proof of Theorem relexpnndm
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7166 . . . . . 6 (𝑛 = 1 → (𝑅𝑟𝑛) = (𝑅𝑟1))
21dmeqd 5776 . . . . 5 (𝑛 = 1 → dom (𝑅𝑟𝑛) = dom (𝑅𝑟1))
32sseq1d 4000 . . . 4 (𝑛 = 1 → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟1) ⊆ dom 𝑅))
43imbi2d 343 . . 3 (𝑛 = 1 → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟1) ⊆ dom 𝑅)))
5 oveq2 7166 . . . . . 6 (𝑛 = 𝑚 → (𝑅𝑟𝑛) = (𝑅𝑟𝑚))
65dmeqd 5776 . . . . 5 (𝑛 = 𝑚 → dom (𝑅𝑟𝑛) = dom (𝑅𝑟𝑚))
76sseq1d 4000 . . . 4 (𝑛 = 𝑚 → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟𝑚) ⊆ dom 𝑅))
87imbi2d 343 . . 3 (𝑛 = 𝑚 → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟𝑚) ⊆ dom 𝑅)))
9 oveq2 7166 . . . . . 6 (𝑛 = (𝑚 + 1) → (𝑅𝑟𝑛) = (𝑅𝑟(𝑚 + 1)))
109dmeqd 5776 . . . . 5 (𝑛 = (𝑚 + 1) → dom (𝑅𝑟𝑛) = dom (𝑅𝑟(𝑚 + 1)))
1110sseq1d 4000 . . . 4 (𝑛 = (𝑚 + 1) → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅))
1211imbi2d 343 . . 3 (𝑛 = (𝑚 + 1) → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)))
13 oveq2 7166 . . . . . 6 (𝑛 = 𝑁 → (𝑅𝑟𝑛) = (𝑅𝑟𝑁))
1413dmeqd 5776 . . . . 5 (𝑛 = 𝑁 → dom (𝑅𝑟𝑛) = dom (𝑅𝑟𝑁))
1514sseq1d 4000 . . . 4 (𝑛 = 𝑁 → (dom (𝑅𝑟𝑛) ⊆ dom 𝑅 ↔ dom (𝑅𝑟𝑁) ⊆ dom 𝑅))
1615imbi2d 343 . . 3 (𝑛 = 𝑁 → ((𝑅𝑉 → dom (𝑅𝑟𝑛) ⊆ dom 𝑅) ↔ (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)))
17 relexp1g 14387 . . . . 5 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
1817dmeqd 5776 . . . 4 (𝑅𝑉 → dom (𝑅𝑟1) = dom 𝑅)
19 eqimss 4025 . . . 4 (dom (𝑅𝑟1) = dom 𝑅 → dom (𝑅𝑟1) ⊆ dom 𝑅)
2018, 19syl 17 . . 3 (𝑅𝑉 → dom (𝑅𝑟1) ⊆ dom 𝑅)
21 relexpsucnnr 14386 . . . . . . . . 9 ((𝑅𝑉𝑚 ∈ ℕ) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
2221ancoms 461 . . . . . . . 8 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → (𝑅𝑟(𝑚 + 1)) = ((𝑅𝑟𝑚) ∘ 𝑅))
2322dmeqd 5776 . . . . . . 7 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟(𝑚 + 1)) = dom ((𝑅𝑟𝑚) ∘ 𝑅))
24 dmcoss 5844 . . . . . . 7 dom ((𝑅𝑟𝑚) ∘ 𝑅) ⊆ dom 𝑅
2523, 24eqsstrdi 4023 . . . . . 6 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)
2625a1d 25 . . . . 5 ((𝑚 ∈ ℕ ∧ 𝑅𝑉) → (dom (𝑅𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅))
2726ex 415 . . . 4 (𝑚 ∈ ℕ → (𝑅𝑉 → (dom (𝑅𝑟𝑚) ⊆ dom 𝑅 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)))
2827a2d 29 . . 3 (𝑚 ∈ ℕ → ((𝑅𝑉 → dom (𝑅𝑟𝑚) ⊆ dom 𝑅) → (𝑅𝑉 → dom (𝑅𝑟(𝑚 + 1)) ⊆ dom 𝑅)))
294, 8, 12, 16, 20, 28nnind 11658 . 2 (𝑁 ∈ ℕ → (𝑅𝑉 → dom (𝑅𝑟𝑁) ⊆ dom 𝑅))
3029imp 409 1 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wss 3938  dom cdm 5557  ccom 5561  (class class class)co 7158  1c1 10540   + caddc 10542  cn 11640  𝑟crelexp 14381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-seq 13373  df-relexp 14382
This theorem is referenced by:  relexpdmg  14403  relexpnnrn  14406  relexpfld  14410  relexpaddg  14414  relexpaddss  40070
  Copyright terms: Public domain W3C validator