MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relexpfld Structured version   Visualization version   GIF version

Theorem relexpfld 13723
Description: The field of an exponentiation of a relation a subset of the relation's field. (Contributed by RP, 23-May-2020.)
Assertion
Ref Expression
relexpfld ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅)

Proof of Theorem relexpfld
StepHypRef Expression
1 simpl 473 . . . . . . . 8 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → 𝑁 = 1)
21oveq2d 6620 . . . . . . 7 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) = (𝑅𝑟1))
3 relexp1g 13700 . . . . . . . 8 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
43ad2antll 764 . . . . . . 7 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟1) = 𝑅)
52, 4eqtrd 2655 . . . . . 6 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) = 𝑅)
65unieqd 4412 . . . . 5 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) = 𝑅)
76unieqd 4412 . . . 4 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) = 𝑅)
8 eqimss 3636 . . . 4 ( (𝑅𝑟𝑁) = 𝑅 (𝑅𝑟𝑁) ⊆ 𝑅)
97, 8syl 17 . . 3 ((𝑁 = 1 ∧ (𝑁 ∈ ℕ0𝑅𝑉)) → (𝑅𝑟𝑁) ⊆ 𝑅)
109ex 450 . 2 (𝑁 = 1 → ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅))
11 simp2 1060 . . . . . . 7 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → 𝑁 ∈ ℕ0)
12 simp3 1061 . . . . . . 7 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → 𝑅𝑉)
13 simp1 1059 . . . . . . . 8 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → ¬ 𝑁 = 1)
1413pm2.21d 118 . . . . . . 7 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑁 = 1 → Rel 𝑅))
1511, 12, 143jca 1240 . . . . . 6 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑁 ∈ ℕ0𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)))
16 relexprelg 13712 . . . . . 6 ((𝑁 ∈ ℕ0𝑅𝑉 ∧ (𝑁 = 1 → Rel 𝑅)) → Rel (𝑅𝑟𝑁))
17 relfld 5620 . . . . . 6 (Rel (𝑅𝑟𝑁) → (𝑅𝑟𝑁) = (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)))
1815, 16, 173syl 18 . . . . 5 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) = (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)))
19 elnn0 11238 . . . . . . 7 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
20 relexpnndm 13715 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
21 relexpnnrn 13719 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) ⊆ ran 𝑅)
22 unss12 3763 . . . . . . . . . 10 ((dom (𝑅𝑟𝑁) ⊆ dom 𝑅 ∧ ran (𝑅𝑟𝑁) ⊆ ran 𝑅) → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))
2320, 21, 22syl2anc 692 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))
2423ex 450 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑅𝑉 → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)))
25 simpl 473 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑅𝑉) → 𝑁 = 0)
2625oveq2d 6620 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
27 relexp0g 13696 . . . . . . . . . . . . . . 15 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
2827adantl 482 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
2926, 28eqtrd 2655 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3029dmeqd 5286 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) = dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
31 dmresi 5416 . . . . . . . . . . . 12 dom ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
3230, 31syl6eq 2671 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅))
33 eqimss 3636 . . . . . . . . . . 11 (dom (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
3432, 33syl 17 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
3529rneqd 5313 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) = ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
36 rnresi 5438 . . . . . . . . . . . 12 ran ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
3735, 36syl6eq 2671 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅))
38 eqimss 3636 . . . . . . . . . . 11 (ran (𝑅𝑟𝑁) = (dom 𝑅 ∪ ran 𝑅) → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
3937, 38syl 17 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑅𝑉) → ran (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
4034, 39unssd 3767 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑅𝑉) → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))
4140ex 450 . . . . . . . 8 (𝑁 = 0 → (𝑅𝑉 → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)))
4224, 41jaoi 394 . . . . . . 7 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑅𝑉 → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)))
4319, 42sylbi 207 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑅𝑉 → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅)))
4411, 12, 43sylc 65 . . . . 5 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (dom (𝑅𝑟𝑁) ∪ ran (𝑅𝑟𝑁)) ⊆ (dom 𝑅 ∪ ran 𝑅))
4518, 44eqsstrd 3618 . . . 4 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
46 dmrnssfld 5344 . . . 4 (dom 𝑅 ∪ ran 𝑅) ⊆ 𝑅
4745, 46syl6ss 3595 . . 3 ((¬ 𝑁 = 1 ∧ 𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅)
48473expib 1265 . 2 𝑁 = 1 → ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅))
4910, 48pm2.61i 176 1 ((𝑁 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑁) ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  cun 3553  wss 3555   cuni 4402   I cid 4984  dom cdm 5074  ran crn 5075  cres 5076  Rel wrel 5079  (class class class)co 6604  0cc0 9880  1c1 9881  cn 10964  0cn0 11236  𝑟crelexp 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-seq 12742  df-relexp 13695
This theorem is referenced by:  relexpfldd  13724
  Copyright terms: Public domain W3C validator