MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  repsdf2 Structured version   Visualization version   GIF version

Theorem repsdf2 13325
Description: Alternative definition of a "repeated symbol word". (Contributed by AV, 7-Nov-2018.)
Assertion
Ref Expression
repsdf2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
Distinct variable groups:   𝑖,𝑁   𝑆,𝑖   𝑖,𝑊
Allowed substitution hint:   𝑉(𝑖)

Proof of Theorem repsdf2
StepHypRef Expression
1 repsconst 13319 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑆 repeatS 𝑁) = ((0..^𝑁) × {𝑆}))
21eqeq2d 2620 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ 𝑊 = ((0..^𝑁) × {𝑆})))
3 fconst2g 6351 . . 3 (𝑆𝑉 → (𝑊:(0..^𝑁)⟶{𝑆} ↔ 𝑊 = ((0..^𝑁) × {𝑆})))
43adantr 480 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} ↔ 𝑊 = ((0..^𝑁) × {𝑆})))
5 fconstfv 6359 . . . . . . . . 9 (𝑊:(0..^𝑁)⟶{𝑆} ↔ (𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆))
6 simpr 476 . . . . . . . . . . . . 13 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → 𝑊:(0..^𝑁)⟶{𝑆})
7 snssi 4280 . . . . . . . . . . . . . . 15 (𝑆𝑉 → {𝑆} ⊆ 𝑉)
87adantr 480 . . . . . . . . . . . . . 14 ((𝑆𝑉𝑁 ∈ ℕ0) → {𝑆} ⊆ 𝑉)
98adantr 480 . . . . . . . . . . . . 13 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → {𝑆} ⊆ 𝑉)
106, 9jca 553 . . . . . . . . . . . 12 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (𝑊:(0..^𝑁)⟶{𝑆} ∧ {𝑆} ⊆ 𝑉))
11 fss 5955 . . . . . . . . . . . 12 ((𝑊:(0..^𝑁)⟶{𝑆} ∧ {𝑆} ⊆ 𝑉) → 𝑊:(0..^𝑁)⟶𝑉)
12 iswrdi 13113 . . . . . . . . . . . 12 (𝑊:(0..^𝑁)⟶𝑉𝑊 ∈ Word 𝑉)
1310, 11, 123syl 18 . . . . . . . . . . 11 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → 𝑊 ∈ Word 𝑉)
14 ffn 5944 . . . . . . . . . . . . . . 15 (𝑊:(0..^𝑁)⟶{𝑆} → 𝑊 Fn (0..^𝑁))
15 ffzo0hash 13045 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0𝑊 Fn (0..^𝑁)) → (#‘𝑊) = 𝑁)
1615expcom 450 . . . . . . . . . . . . . . 15 (𝑊 Fn (0..^𝑁) → (𝑁 ∈ ℕ0 → (#‘𝑊) = 𝑁))
1714, 16syl 17 . . . . . . . . . . . . . 14 (𝑊:(0..^𝑁)⟶{𝑆} → (𝑁 ∈ ℕ0 → (#‘𝑊) = 𝑁))
1817com12 32 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑊:(0..^𝑁)⟶{𝑆} → (#‘𝑊) = 𝑁))
1918adantl 481 . . . . . . . . . . . 12 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} → (#‘𝑊) = 𝑁))
2019imp 444 . . . . . . . . . . 11 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (#‘𝑊) = 𝑁)
2113, 20jca 553 . . . . . . . . . 10 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ 𝑊:(0..^𝑁)⟶{𝑆}) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁))
2221ex 449 . . . . . . . . 9 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁)))
235, 22syl5bir 232 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁)))
2423expcomd 453 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆 → (𝑊 Fn (0..^𝑁) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁))))
2524imp 444 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) → (𝑊 Fn (0..^𝑁) → (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁)))
26 wrdf 13114 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉𝑊:(0..^(#‘𝑊))⟶𝑉)
27 ffn 5944 . . . . . . . . . 10 (𝑊:(0..^(#‘𝑊))⟶𝑉𝑊 Fn (0..^(#‘𝑊)))
28 oveq2 6535 . . . . . . . . . . . . . 14 ((#‘𝑊) = 𝑁 → (0..^(#‘𝑊)) = (0..^𝑁))
2928fneq2d 5882 . . . . . . . . . . . . 13 ((#‘𝑊) = 𝑁 → (𝑊 Fn (0..^(#‘𝑊)) ↔ 𝑊 Fn (0..^𝑁)))
3029biimpd 218 . . . . . . . . . . . 12 ((#‘𝑊) = 𝑁 → (𝑊 Fn (0..^(#‘𝑊)) → 𝑊 Fn (0..^𝑁)))
3130a1d 25 . . . . . . . . . . 11 ((#‘𝑊) = 𝑁 → ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 Fn (0..^(#‘𝑊)) → 𝑊 Fn (0..^𝑁))))
3231com13 86 . . . . . . . . . 10 (𝑊 Fn (0..^(#‘𝑊)) → ((𝑆𝑉𝑁 ∈ ℕ0) → ((#‘𝑊) = 𝑁𝑊 Fn (0..^𝑁))))
3326, 27, 323syl 18 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → ((𝑆𝑉𝑁 ∈ ℕ0) → ((#‘𝑊) = 𝑁𝑊 Fn (0..^𝑁))))
3433com12 32 . . . . . . . 8 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 ∈ Word 𝑉 → ((#‘𝑊) = 𝑁𝑊 Fn (0..^𝑁))))
3534impd 446 . . . . . . 7 ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁) → 𝑊 Fn (0..^𝑁)))
3635adantr 480 . . . . . 6 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) → ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁) → 𝑊 Fn (0..^𝑁)))
3725, 36impbid 201 . . . . 5 (((𝑆𝑉𝑁 ∈ ℕ0) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) → (𝑊 Fn (0..^𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁)))
3837ex 449 . . . 4 ((𝑆𝑉𝑁 ∈ ℕ0) → (∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆 → (𝑊 Fn (0..^𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁))))
3938pm5.32rd 670 . . 3 ((𝑆𝑉𝑁 ∈ ℕ0) → ((𝑊 Fn (0..^𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) ↔ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
40 df-3an 1033 . . 3 ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆) ↔ ((𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁) ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆))
4139, 5, 403bitr4g 302 . 2 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊:(0..^𝑁)⟶{𝑆} ↔ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
422, 4, 413bitr2d 295 1 ((𝑆𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝑆 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (#‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wral 2896  wss 3540  {csn 4125   × cxp 5026   Fn wfn 5785  wf 5786  cfv 5790  (class class class)co 6527  0cc0 9793  0cn0 11142  ..^cfzo 12292  #chash 12937  Word cword 13095   repeatS creps 13102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-card 8626  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-n0 11143  df-z 11214  df-uz 11523  df-fz 12156  df-fzo 12293  df-hash 12938  df-word 13103  df-reps 13110
This theorem is referenced by:  repswsymball  13326  repswsymballbi  13327  cshwrepswhash1  15596
  Copyright terms: Public domain W3C validator