MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwrepswhash1 Structured version   Visualization version   GIF version

Theorem cshwrepswhash1 16436
Description: The size of the set of (different!) words resulting by cyclically shifting a nonempty "repeated symbol word" is 1. (Contributed by AV, 18-May-2018.) (Revised by AV, 8-Nov-2018.)
Hypothesis
Ref Expression
cshwrepswhash1.m 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
Assertion
Ref Expression
cshwrepswhash1 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (♯‘𝑀) = 1)
Distinct variable groups:   𝑛,𝑉,𝑤   𝑛,𝑊,𝑤   𝐴,𝑛,𝑤   𝑛,𝑁,𝑤
Allowed substitution hints:   𝑀(𝑤,𝑛)

Proof of Theorem cshwrepswhash1
Dummy variables 𝑖 𝑢 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnnn0 11905 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 repsdf2 14140 . . . . . . . 8 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝑊 = (𝐴 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)))
31, 2sylan2 594 . . . . . . 7 ((𝐴𝑉𝑁 ∈ ℕ) → (𝑊 = (𝐴 repeatS 𝑁) ↔ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)))
4 simp1 1132 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 𝑊 ∈ Word 𝑉)
54adantl 484 . . . . . . . . 9 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → 𝑊 ∈ Word 𝑉)
6 eleq1 2900 . . . . . . . . . . . . . . . 16 (𝑁 = (♯‘𝑊) → (𝑁 ∈ ℕ ↔ (♯‘𝑊) ∈ ℕ))
76eqcoms 2829 . . . . . . . . . . . . . . 15 ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ ↔ (♯‘𝑊) ∈ ℕ))
8 lbfzo0 13078 . . . . . . . . . . . . . . . 16 (0 ∈ (0..^(♯‘𝑊)) ↔ (♯‘𝑊) ∈ ℕ)
98biimpri 230 . . . . . . . . . . . . . . 15 ((♯‘𝑊) ∈ ℕ → 0 ∈ (0..^(♯‘𝑊)))
107, 9syl6bi 255 . . . . . . . . . . . . . 14 ((♯‘𝑊) = 𝑁 → (𝑁 ∈ ℕ → 0 ∈ (0..^(♯‘𝑊))))
11103ad2ant2 1130 . . . . . . . . . . . . 13 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → (𝑁 ∈ ℕ → 0 ∈ (0..^(♯‘𝑊))))
1211com12 32 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 0 ∈ (0..^(♯‘𝑊))))
1312adantl 484 . . . . . . . . . . 11 ((𝐴𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 0 ∈ (0..^(♯‘𝑊))))
1413imp 409 . . . . . . . . . 10 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → 0 ∈ (0..^(♯‘𝑊)))
15 cshw0 14156 . . . . . . . . . . 11 (𝑊 ∈ Word 𝑉 → (𝑊 cyclShift 0) = 𝑊)
165, 15syl 17 . . . . . . . . . 10 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → (𝑊 cyclShift 0) = 𝑊)
17 oveq2 7164 . . . . . . . . . . . 12 (𝑛 = 0 → (𝑊 cyclShift 𝑛) = (𝑊 cyclShift 0))
1817eqeq1d 2823 . . . . . . . . . . 11 (𝑛 = 0 → ((𝑊 cyclShift 𝑛) = 𝑊 ↔ (𝑊 cyclShift 0) = 𝑊))
1918rspcev 3623 . . . . . . . . . 10 ((0 ∈ (0..^(♯‘𝑊)) ∧ (𝑊 cyclShift 0) = 𝑊) → ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊)
2014, 16, 19syl2anc 586 . . . . . . . . 9 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊)
21 eqeq2 2833 . . . . . . . . . . 11 (𝑤 = 𝑊 → ((𝑊 cyclShift 𝑛) = 𝑤 ↔ (𝑊 cyclShift 𝑛) = 𝑊))
2221rexbidv 3297 . . . . . . . . . 10 (𝑤 = 𝑊 → (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊))
2322rspcev 3623 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑊) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
245, 20, 23syl2anc 586 . . . . . . . 8 (((𝐴𝑉𝑁 ∈ ℕ) ∧ (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴)) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
2524ex 415 . . . . . . 7 ((𝐴𝑉𝑁 ∈ ℕ) → ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤))
263, 25sylbid 242 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ) → (𝑊 = (𝐴 repeatS 𝑁) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤))
27263impia 1113 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
28 repsw 14137 . . . . . . . 8 ((𝐴𝑉𝑁 ∈ ℕ0) → (𝐴 repeatS 𝑁) ∈ Word 𝑉)
291, 28sylan2 594 . . . . . . 7 ((𝐴𝑉𝑁 ∈ ℕ) → (𝐴 repeatS 𝑁) ∈ Word 𝑉)
30293adant3 1128 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (𝐴 repeatS 𝑁) ∈ Word 𝑉)
31 simpll3 1210 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → 𝑊 = (𝐴 repeatS 𝑁))
3231oveq1d 7171 . . . . . . . . . . 11 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑛) = ((𝐴 repeatS 𝑁) cyclShift 𝑛))
33 simp1 1132 . . . . . . . . . . . . 13 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → 𝐴𝑉)
3433ad2antrr 724 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → 𝐴𝑉)
3513ad2ant2 1130 . . . . . . . . . . . . 13 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → 𝑁 ∈ ℕ0)
3635ad2antrr 724 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → 𝑁 ∈ ℕ0)
37 elfzoelz 13039 . . . . . . . . . . . . 13 (𝑛 ∈ (0..^(♯‘𝑊)) → 𝑛 ∈ ℤ)
3837adantl 484 . . . . . . . . . . . 12 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → 𝑛 ∈ ℤ)
39 repswcshw 14174 . . . . . . . . . . . 12 ((𝐴𝑉𝑁 ∈ ℕ0𝑛 ∈ ℤ) → ((𝐴 repeatS 𝑁) cyclShift 𝑛) = (𝐴 repeatS 𝑁))
4034, 36, 38, 39syl3anc 1367 . . . . . . . . . . 11 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → ((𝐴 repeatS 𝑁) cyclShift 𝑛) = (𝐴 repeatS 𝑁))
4132, 40eqtrd 2856 . . . . . . . . . 10 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → (𝑊 cyclShift 𝑛) = (𝐴 repeatS 𝑁))
4241eqeq1d 2823 . . . . . . . . 9 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑛) = 𝑢 ↔ (𝐴 repeatS 𝑁) = 𝑢))
4342biimpd 231 . . . . . . . 8 ((((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) ∧ 𝑛 ∈ (0..^(♯‘𝑊))) → ((𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢))
4443rexlimdva 3284 . . . . . . 7 (((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) ∧ 𝑢 ∈ Word 𝑉) → (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢))
4544ralrimiva 3182 . . . . . 6 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢))
46 eqeq1 2825 . . . . . . . . 9 (𝑤 = (𝐴 repeatS 𝑁) → (𝑤 = 𝑢 ↔ (𝐴 repeatS 𝑁) = 𝑢))
4746imbi2d 343 . . . . . . . 8 (𝑤 = (𝐴 repeatS 𝑁) → ((∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢) ↔ (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢)))
4847ralbidv 3197 . . . . . . 7 (𝑤 = (𝐴 repeatS 𝑁) → (∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢) ↔ ∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢)))
4948rspcev 3623 . . . . . 6 (((𝐴 repeatS 𝑁) ∈ Word 𝑉 ∧ ∀𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢 → (𝐴 repeatS 𝑁) = 𝑢)) → ∃𝑤 ∈ Word 𝑉𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢))
5030, 45, 49syl2anc 586 . . . . 5 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑤 ∈ Word 𝑉𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢))
51 eqeq2 2833 . . . . . . 7 (𝑤 = 𝑢 → ((𝑊 cyclShift 𝑛) = 𝑤 ↔ (𝑊 cyclShift 𝑛) = 𝑢))
5251rexbidv 3297 . . . . . 6 (𝑤 = 𝑢 → (∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢))
5352reu7 3723 . . . . 5 (∃!𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ (∃𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ∧ ∃𝑤 ∈ Word 𝑉𝑢 ∈ Word 𝑉(∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑢𝑤 = 𝑢)))
5427, 50, 53sylanbrc 585 . . . 4 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃!𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤)
55 reusn 4663 . . . 4 (∃!𝑤 ∈ Word 𝑉𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤 ↔ ∃𝑟{𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
5654, 55sylib 220 . . 3 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑟{𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
57 cshwrepswhash1.m . . . . 5 𝑀 = {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤}
5857eqeq1i 2826 . . . 4 (𝑀 = {𝑟} ↔ {𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
5958exbii 1848 . . 3 (∃𝑟 𝑀 = {𝑟} ↔ ∃𝑟{𝑤 ∈ Word 𝑉 ∣ ∃𝑛 ∈ (0..^(♯‘𝑊))(𝑊 cyclShift 𝑛) = 𝑤} = {𝑟})
6056, 59sylibr 236 . 2 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ∃𝑟 𝑀 = {𝑟})
6157cshwsex 16434 . . . . . 6 (𝑊 ∈ Word 𝑉𝑀 ∈ V)
62613ad2ant1 1129 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑁)(𝑊𝑖) = 𝐴) → 𝑀 ∈ V)
633, 62syl6bi 255 . . . 4 ((𝐴𝑉𝑁 ∈ ℕ) → (𝑊 = (𝐴 repeatS 𝑁) → 𝑀 ∈ V))
64633impia 1113 . . 3 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → 𝑀 ∈ V)
65 hash1snb 13781 . . 3 (𝑀 ∈ V → ((♯‘𝑀) = 1 ↔ ∃𝑟 𝑀 = {𝑟}))
6664, 65syl 17 . 2 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → ((♯‘𝑀) = 1 ↔ ∃𝑟 𝑀 = {𝑟}))
6760, 66mpbird 259 1 ((𝐴𝑉𝑁 ∈ ℕ ∧ 𝑊 = (𝐴 repeatS 𝑁)) → (♯‘𝑀) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  wral 3138  wrex 3139  ∃!wreu 3140  {crab 3142  Vcvv 3494  {csn 4567  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538  cn 11638  0cn0 11898  cz 11982  ..^cfzo 13034  chash 13691  Word cword 13862   repeatS creps 14130   cyclShift ccsh 14150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-fl 13163  df-mod 13239  df-hash 13692  df-word 13863  df-concat 13923  df-substr 14003  df-pfx 14033  df-reps 14131  df-csh 14151
This theorem is referenced by:  cshwshash  16438
  Copyright terms: Public domain W3C validator