MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reschomf Structured version   Visualization version   GIF version

Theorem reschomf 16472
Description: Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rescbas.d 𝐷 = (𝐶cat 𝐻)
rescbas.b 𝐵 = (Base‘𝐶)
rescbas.c (𝜑𝐶𝑉)
rescbas.h (𝜑𝐻 Fn (𝑆 × 𝑆))
rescbas.s (𝜑𝑆𝐵)
Assertion
Ref Expression
reschomf (𝜑𝐻 = (Homf𝐷))

Proof of Theorem reschomf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rescbas.d . . . 4 𝐷 = (𝐶cat 𝐻)
2 rescbas.b . . . 4 𝐵 = (Base‘𝐶)
3 rescbas.c . . . 4 (𝜑𝐶𝑉)
4 rescbas.h . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
5 rescbas.s . . . 4 (𝜑𝑆𝐵)
61, 2, 3, 4, 5reschom 16471 . . 3 (𝜑𝐻 = (Hom ‘𝐷))
71, 2, 3, 4, 5rescbas 16470 . . . . . . 7 (𝜑𝑆 = (Base‘𝐷))
87sqxpeqd 5131 . . . . . 6 (𝜑 → (𝑆 × 𝑆) = ((Base‘𝐷) × (Base‘𝐷)))
96, 8fneq12d 5971 . . . . 5 (𝜑 → (𝐻 Fn (𝑆 × 𝑆) ↔ (Hom ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷))))
104, 9mpbid 222 . . . 4 (𝜑 → (Hom ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
11 fnov 6753 . . . 4 ((Hom ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ (Hom ‘𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥(Hom ‘𝐷)𝑦)))
1210, 11sylib 208 . . 3 (𝜑 → (Hom ‘𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥(Hom ‘𝐷)𝑦)))
136, 12eqtrd 2654 . 2 (𝜑𝐻 = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥(Hom ‘𝐷)𝑦)))
14 eqid 2620 . . 3 (Homf𝐷) = (Homf𝐷)
15 eqid 2620 . . 3 (Base‘𝐷) = (Base‘𝐷)
16 eqid 2620 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
1714, 15, 16homffval 16331 . 2 (Homf𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥(Hom ‘𝐷)𝑦))
1813, 17syl6eqr 2672 1 (𝜑𝐻 = (Homf𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1481  wcel 1988  wss 3567   × cxp 5102   Fn wfn 5871  cfv 5876  (class class class)co 6635  cmpt2 6637  Basecbs 15838  Hom chom 15933  Homf chomf 16308  cat cresc 16449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-hom 15947  df-homf 16312  df-resc 16452
This theorem is referenced by:  subsubc  16494
  Copyright terms: Public domain W3C validator