MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reschomf Structured version   Visualization version   GIF version

Theorem reschomf 17101
Description: Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rescbas.d 𝐷 = (𝐶cat 𝐻)
rescbas.b 𝐵 = (Base‘𝐶)
rescbas.c (𝜑𝐶𝑉)
rescbas.h (𝜑𝐻 Fn (𝑆 × 𝑆))
rescbas.s (𝜑𝑆𝐵)
Assertion
Ref Expression
reschomf (𝜑𝐻 = (Homf𝐷))

Proof of Theorem reschomf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rescbas.d . . . 4 𝐷 = (𝐶cat 𝐻)
2 rescbas.b . . . 4 𝐵 = (Base‘𝐶)
3 rescbas.c . . . 4 (𝜑𝐶𝑉)
4 rescbas.h . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
5 rescbas.s . . . 4 (𝜑𝑆𝐵)
61, 2, 3, 4, 5reschom 17100 . . 3 (𝜑𝐻 = (Hom ‘𝐷))
71, 2, 3, 4, 5rescbas 17099 . . . . . . 7 (𝜑𝑆 = (Base‘𝐷))
87sqxpeqd 5587 . . . . . 6 (𝜑 → (𝑆 × 𝑆) = ((Base‘𝐷) × (Base‘𝐷)))
96, 8fneq12d 6448 . . . . 5 (𝜑 → (𝐻 Fn (𝑆 × 𝑆) ↔ (Hom ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷))))
104, 9mpbid 234 . . . 4 (𝜑 → (Hom ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)))
11 fnov 7282 . . . 4 ((Hom ‘𝐷) Fn ((Base‘𝐷) × (Base‘𝐷)) ↔ (Hom ‘𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥(Hom ‘𝐷)𝑦)))
1210, 11sylib 220 . . 3 (𝜑 → (Hom ‘𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥(Hom ‘𝐷)𝑦)))
136, 12eqtrd 2856 . 2 (𝜑𝐻 = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥(Hom ‘𝐷)𝑦)))
14 eqid 2821 . . 3 (Homf𝐷) = (Homf𝐷)
15 eqid 2821 . . 3 (Base‘𝐷) = (Base‘𝐷)
16 eqid 2821 . . 3 (Hom ‘𝐷) = (Hom ‘𝐷)
1714, 15, 16homffval 16960 . 2 (Homf𝐷) = (𝑥 ∈ (Base‘𝐷), 𝑦 ∈ (Base‘𝐷) ↦ (𝑥(Hom ‘𝐷)𝑦))
1813, 17syl6eqr 2874 1 (𝜑𝐻 = (Homf𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wss 3936   × cxp 5553   Fn wfn 6350  cfv 6355  (class class class)co 7156  cmpo 7158  Basecbs 16483  Hom chom 16576  Homf chomf 16937  cat cresc 17078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-hom 16589  df-homf 16941  df-resc 17081
This theorem is referenced by:  subsubc  17123
  Copyright terms: Public domain W3C validator