MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ressusp Structured version   Visualization version   GIF version

Theorem ressusp 22874
Description: The restriction of a uniform topological space to an open set is a uniform space. (Contributed by Thierry Arnoux, 16-Dec-2017.)
Hypotheses
Ref Expression
ressusp.1 𝐵 = (Base‘𝑊)
ressusp.2 𝐽 = (TopOpen‘𝑊)
Assertion
Ref Expression
ressusp ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝑊s 𝐴) ∈ UnifSp)

Proof of Theorem ressusp
StepHypRef Expression
1 ressuss 22872 . . . . 5 (𝐴𝐽 → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
213ad2ant3 1131 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifSt‘(𝑊s 𝐴)) = ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)))
3 simp1 1132 . . . . . . 7 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝑊 ∈ UnifSp)
4 ressusp.1 . . . . . . . 8 𝐵 = (Base‘𝑊)
5 eqid 2821 . . . . . . . 8 (UnifSt‘𝑊) = (UnifSt‘𝑊)
6 ressusp.2 . . . . . . . 8 𝐽 = (TopOpen‘𝑊)
74, 5, 6isusp 22870 . . . . . . 7 (𝑊 ∈ UnifSp ↔ ((UnifSt‘𝑊) ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑊))))
83, 7sylib 220 . . . . . 6 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → ((UnifSt‘𝑊) ∈ (UnifOn‘𝐵) ∧ 𝐽 = (unifTop‘(UnifSt‘𝑊))))
98simpld 497 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifSt‘𝑊) ∈ (UnifOn‘𝐵))
10 simp2 1133 . . . . . . 7 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝑊 ∈ TopSp)
114, 6istps 21542 . . . . . . 7 (𝑊 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝐵))
1210, 11sylib 220 . . . . . 6 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐽 ∈ (TopOn‘𝐵))
13 simp3 1134 . . . . . 6 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐴𝐽)
14 toponss 21535 . . . . . 6 ((𝐽 ∈ (TopOn‘𝐵) ∧ 𝐴𝐽) → 𝐴𝐵)
1512, 13, 14syl2anc 586 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐴𝐵)
16 trust 22838 . . . . 5 (((UnifSt‘𝑊) ∈ (UnifOn‘𝐵) ∧ 𝐴𝐵) → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
179, 15, 16syl2anc 586 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → ((UnifSt‘𝑊) ↾t (𝐴 × 𝐴)) ∈ (UnifOn‘𝐴))
182, 17eqeltrd 2913 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifSt‘(𝑊s 𝐴)) ∈ (UnifOn‘𝐴))
19 eqid 2821 . . . . . 6 (𝑊s 𝐴) = (𝑊s 𝐴)
2019, 4ressbas2 16555 . . . . 5 (𝐴𝐵𝐴 = (Base‘(𝑊s 𝐴)))
2115, 20syl 17 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐴 = (Base‘(𝑊s 𝐴)))
2221fveq2d 6674 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifOn‘𝐴) = (UnifOn‘(Base‘(𝑊s 𝐴))))
2318, 22eleqtrd 2915 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (UnifSt‘(𝑊s 𝐴)) ∈ (UnifOn‘(Base‘(𝑊s 𝐴))))
248simprd 498 . . . . 5 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐽 = (unifTop‘(UnifSt‘𝑊)))
2513, 24eleqtrd 2915 . . . 4 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → 𝐴 ∈ (unifTop‘(UnifSt‘𝑊)))
26 restutopopn 22847 . . . 4 (((UnifSt‘𝑊) ∈ (UnifOn‘𝐵) ∧ 𝐴 ∈ (unifTop‘(UnifSt‘𝑊))) → ((unifTop‘(UnifSt‘𝑊)) ↾t 𝐴) = (unifTop‘((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))))
279, 25, 26syl2anc 586 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → ((unifTop‘(UnifSt‘𝑊)) ↾t 𝐴) = (unifTop‘((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))))
2824oveq1d 7171 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝐽t 𝐴) = ((unifTop‘(UnifSt‘𝑊)) ↾t 𝐴))
292fveq2d 6674 . . 3 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (unifTop‘(UnifSt‘(𝑊s 𝐴))) = (unifTop‘((UnifSt‘𝑊) ↾t (𝐴 × 𝐴))))
3027, 28, 293eqtr4d 2866 . 2 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝐽t 𝐴) = (unifTop‘(UnifSt‘(𝑊s 𝐴))))
31 eqid 2821 . . 3 (Base‘(𝑊s 𝐴)) = (Base‘(𝑊s 𝐴))
32 eqid 2821 . . 3 (UnifSt‘(𝑊s 𝐴)) = (UnifSt‘(𝑊s 𝐴))
3319, 6resstopn 21794 . . 3 (𝐽t 𝐴) = (TopOpen‘(𝑊s 𝐴))
3431, 32, 33isusp 22870 . 2 ((𝑊s 𝐴) ∈ UnifSp ↔ ((UnifSt‘(𝑊s 𝐴)) ∈ (UnifOn‘(Base‘(𝑊s 𝐴))) ∧ (𝐽t 𝐴) = (unifTop‘(UnifSt‘(𝑊s 𝐴)))))
3523, 30, 34sylanbrc 585 1 ((𝑊 ∈ UnifSp ∧ 𝑊 ∈ TopSp ∧ 𝐴𝐽) → (𝑊s 𝐴) ∈ UnifSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3936   × cxp 5553  cfv 6355  (class class class)co 7156  Basecbs 16483  s cress 16484  t crest 16694  TopOpenctopn 16695  TopOnctopon 21518  TopSpctps 21540  UnifOncust 22808  unifTopcutop 22839  UnifStcuss 22862  UnifSpcusp 22863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-tset 16584  df-unif 16588  df-rest 16696  df-topn 16697  df-top 21502  df-topon 21519  df-topsp 21541  df-ust 22809  df-utop 22840  df-uss 22865  df-usp 22866
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator